{"title":"基于BDS/INS模型的模糊度分辨方法","authors":"F. Wu, J. Zhao, J. Xue, D. Li","doi":"10.1080/00396265.2022.2089822","DOIUrl":null,"url":null,"abstract":"Due to the highly dynamic changes of the environment, the frequent loss of signal will seriously reduce the accuracy of realtime dynamic positioning. Meanwhile, the ambiguity resolution for medium/long baseline is more affected by atmospheric delay. To solve this problem, an Inertial Navigation System (INS) assisted Beidou Navigation System (BDS) medium/long baseline partial ambiguity resolution (PAR) method is designed. Firstly, constructing the BDS/INS tight integrated system that uses INS provided initial information to ambiguity resolution when the signal outages. Secondly, the atmospheric delay constraint is introduced to improve the precision of float ambiguity. Finally, the PAR based on the elevation angle information is applied to enhance fixed speed and accuracy. The vehicle experiments show that the proposed algorithm can quickly fix the ambiguity of medium/long baseline when the satellite signal outages for a short time, and improve the positioning accuracy of medium/long baseline in the dynamic environment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambiguity resolution method using BDS/INS model\",\"authors\":\"F. Wu, J. Zhao, J. Xue, D. Li\",\"doi\":\"10.1080/00396265.2022.2089822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the highly dynamic changes of the environment, the frequent loss of signal will seriously reduce the accuracy of realtime dynamic positioning. Meanwhile, the ambiguity resolution for medium/long baseline is more affected by atmospheric delay. To solve this problem, an Inertial Navigation System (INS) assisted Beidou Navigation System (BDS) medium/long baseline partial ambiguity resolution (PAR) method is designed. Firstly, constructing the BDS/INS tight integrated system that uses INS provided initial information to ambiguity resolution when the signal outages. Secondly, the atmospheric delay constraint is introduced to improve the precision of float ambiguity. Finally, the PAR based on the elevation angle information is applied to enhance fixed speed and accuracy. The vehicle experiments show that the proposed algorithm can quickly fix the ambiguity of medium/long baseline when the satellite signal outages for a short time, and improve the positioning accuracy of medium/long baseline in the dynamic environment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/00396265.2022.2089822\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/00396265.2022.2089822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Due to the highly dynamic changes of the environment, the frequent loss of signal will seriously reduce the accuracy of realtime dynamic positioning. Meanwhile, the ambiguity resolution for medium/long baseline is more affected by atmospheric delay. To solve this problem, an Inertial Navigation System (INS) assisted Beidou Navigation System (BDS) medium/long baseline partial ambiguity resolution (PAR) method is designed. Firstly, constructing the BDS/INS tight integrated system that uses INS provided initial information to ambiguity resolution when the signal outages. Secondly, the atmospheric delay constraint is introduced to improve the precision of float ambiguity. Finally, the PAR based on the elevation angle information is applied to enhance fixed speed and accuracy. The vehicle experiments show that the proposed algorithm can quickly fix the ambiguity of medium/long baseline when the satellite signal outages for a short time, and improve the positioning accuracy of medium/long baseline in the dynamic environment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.