热机械载荷对聚脲残余效应的非原位光谱表征

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2021-12-23 DOI:10.1115/1.4053349
N. Huynh, G. Youssef
{"title":"热机械载荷对聚脲残余效应的非原位光谱表征","authors":"N. Huynh, G. Youssef","doi":"10.1115/1.4053349","DOIUrl":null,"url":null,"abstract":"\n The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS), operating in the transmission mode. Samples of different thicknesses were submerged in liquid nitrogen and reached cryogenic isothermal condition before equilibrating at room temperature. Another set of samples were extracted from quasi-statically loaded strips. All samples were then interrogated using THz-TDS since terahertz waves exhibit nonionizing interactions with polymers, eliminating the need for any post-loading preparatory steps of the samples. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded ones. On average, the thermally loaded polyurea results were subtle compared to the results of the unloaded samples, whereas samples that were mechanically stretched showed a considerable difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The spectral peaks were in good agreement with previous research while elucidating the residual effect via the disappearance of three peaks in the low terahertz regime for mechanically loaded samples. In general, the refractive index was dependent on the loading conditions. Terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ex-situ Spectroscopic Characterization of Residual Effects of Thermomechanical Loading on Polyurea\",\"authors\":\"N. Huynh, G. Youssef\",\"doi\":\"10.1115/1.4053349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS), operating in the transmission mode. Samples of different thicknesses were submerged in liquid nitrogen and reached cryogenic isothermal condition before equilibrating at room temperature. Another set of samples were extracted from quasi-statically loaded strips. All samples were then interrogated using THz-TDS since terahertz waves exhibit nonionizing interactions with polymers, eliminating the need for any post-loading preparatory steps of the samples. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded ones. On average, the thermally loaded polyurea results were subtle compared to the results of the unloaded samples, whereas samples that were mechanically stretched showed a considerable difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The spectral peaks were in good agreement with previous research while elucidating the residual effect via the disappearance of three peaks in the low terahertz regime for mechanically loaded samples. In general, the refractive index was dependent on the loading conditions. Terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053349\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4053349","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

利用太赫兹时域光谱(THz-TDS)研究了热载荷和机械载荷下聚脲样品的残余效应。将不同厚度的样品浸泡在液氮中,达到低温等温状态,然后在室温下进行平衡。另一组样品是从准静力加载条中提取的。然后使用太赫兹tds对所有样品进行询问,因为太赫兹波与聚合物表现出非电离相互作用,从而消除了样品加载后准备步骤的需要。利用时域太赫兹信号提取样品的光学和电学特性与样品厚度和加载条件的关系。残余效应在机械加载的样品中是突出的,而在热加载的样品中几乎可以忽略不计。平均而言,热加载的聚脲结果与卸载样品的结果相比是微妙的,而机械拉伸的样品则显示出相当大的差异。光谱分析报告了原始聚脲和加载聚脲的复折射率随频率的变化,其厚度和光谱峰与聚脲结构的基本振动模式有关。光谱峰与先前的研究结果一致,同时通过机械加载样品在低太赫兹区三个峰的消失来阐明残留效应。一般情况下,折射率与加载条件有关。太赫兹光谱学被证明是一种很有前途的工具,可以用于未来现场和现场依赖性聚合物响应的操作研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ex-situ Spectroscopic Characterization of Residual Effects of Thermomechanical Loading on Polyurea
The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS), operating in the transmission mode. Samples of different thicknesses were submerged in liquid nitrogen and reached cryogenic isothermal condition before equilibrating at room temperature. Another set of samples were extracted from quasi-statically loaded strips. All samples were then interrogated using THz-TDS since terahertz waves exhibit nonionizing interactions with polymers, eliminating the need for any post-loading preparatory steps of the samples. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded ones. On average, the thermally loaded polyurea results were subtle compared to the results of the unloaded samples, whereas samples that were mechanically stretched showed a considerable difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The spectral peaks were in good agreement with previous research while elucidating the residual effect via the disappearance of three peaks in the low terahertz regime for mechanically loaded samples. In general, the refractive index was dependent on the loading conditions. Terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1