{"title":"氟碳铈矿型PrF[CO3]、SmF[CO3]和EuF[CO3]的合成、晶体结构细化和性能研究","authors":"C. Buyer, Samira A. Schumacher, T. Schleid","doi":"10.1515/zkri-2021-2068","DOIUrl":null,"url":null,"abstract":"Abstract By adding a hot aqueous solution containing KF and K2[CO3] to another hot aquatic brine of Pr[NO3]3 ⋅ 5 H2O, Sm[NO3]3 ⋅ 5 H2O or Eu[NO3]3 ⋅ 5 H2O with a 1.3 times excess of the anion-providing solution, amorphous water-insoluble powders of PrF[CO3], SmF[CO3] and EuF[CO3] can be obtained. Through hydrothermal treatment at 210 °C for five days crystalline powders could be synthesized and their crystal structure was refined with Rietveld methods based on PXRD data. The named compounds crystallize in the bastnaesite-type structure with a = 710.912(12) pm, c = 976.811(6) pm for the praseodymium, a = 704.77(2) pm, c = 971.83(4) pm for the samarium and a = 700.734(6) pm, c = 969.066(8) pm for the europium compound, all hexagonal with Z = 6. Upon heating them, the compounds lose CO2 and fluoride oxides REFO emerge. Thermogravimetric experiments with crystalline samples show thermal stability up to 420 °C for PrF[CO3], 400 °C for SmF[CO3] and 340 °C for EuF[CO3], but decomposition below 200 °C for the amorphous ones. Infrared spectroscopy confirms only marginal portions of [OH]− instead of F− anions in all cases. The RE 3+ cations are coordinated by 9 + 2 anions at distances between 236 and 254 pm plus 326 pm to F− anions and oxygen atoms bonded to carbon as oxocarbonate anions [CO3]2−. Triggered by ultraviolet radiation, the bulk sample of EuF[CO3] shows a poor red luminescence.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"237 1","pages":"117 - 125"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]\",\"authors\":\"C. Buyer, Samira A. Schumacher, T. Schleid\",\"doi\":\"10.1515/zkri-2021-2068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By adding a hot aqueous solution containing KF and K2[CO3] to another hot aquatic brine of Pr[NO3]3 ⋅ 5 H2O, Sm[NO3]3 ⋅ 5 H2O or Eu[NO3]3 ⋅ 5 H2O with a 1.3 times excess of the anion-providing solution, amorphous water-insoluble powders of PrF[CO3], SmF[CO3] and EuF[CO3] can be obtained. Through hydrothermal treatment at 210 °C for five days crystalline powders could be synthesized and their crystal structure was refined with Rietveld methods based on PXRD data. The named compounds crystallize in the bastnaesite-type structure with a = 710.912(12) pm, c = 976.811(6) pm for the praseodymium, a = 704.77(2) pm, c = 971.83(4) pm for the samarium and a = 700.734(6) pm, c = 969.066(8) pm for the europium compound, all hexagonal with Z = 6. Upon heating them, the compounds lose CO2 and fluoride oxides REFO emerge. Thermogravimetric experiments with crystalline samples show thermal stability up to 420 °C for PrF[CO3], 400 °C for SmF[CO3] and 340 °C for EuF[CO3], but decomposition below 200 °C for the amorphous ones. Infrared spectroscopy confirms only marginal portions of [OH]− instead of F− anions in all cases. The RE 3+ cations are coordinated by 9 + 2 anions at distances between 236 and 254 pm plus 326 pm to F− anions and oxygen atoms bonded to carbon as oxocarbonate anions [CO3]2−. Triggered by ultraviolet radiation, the bulk sample of EuF[CO3] shows a poor red luminescence.\",\"PeriodicalId\":48676,\"journal\":{\"name\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"volume\":\"237 1\",\"pages\":\"117 - 125\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/zkri-2021-2068\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2021-2068","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]
Abstract By adding a hot aqueous solution containing KF and K2[CO3] to another hot aquatic brine of Pr[NO3]3 ⋅ 5 H2O, Sm[NO3]3 ⋅ 5 H2O or Eu[NO3]3 ⋅ 5 H2O with a 1.3 times excess of the anion-providing solution, amorphous water-insoluble powders of PrF[CO3], SmF[CO3] and EuF[CO3] can be obtained. Through hydrothermal treatment at 210 °C for five days crystalline powders could be synthesized and their crystal structure was refined with Rietveld methods based on PXRD data. The named compounds crystallize in the bastnaesite-type structure with a = 710.912(12) pm, c = 976.811(6) pm for the praseodymium, a = 704.77(2) pm, c = 971.83(4) pm for the samarium and a = 700.734(6) pm, c = 969.066(8) pm for the europium compound, all hexagonal with Z = 6. Upon heating them, the compounds lose CO2 and fluoride oxides REFO emerge. Thermogravimetric experiments with crystalline samples show thermal stability up to 420 °C for PrF[CO3], 400 °C for SmF[CO3] and 340 °C for EuF[CO3], but decomposition below 200 °C for the amorphous ones. Infrared spectroscopy confirms only marginal portions of [OH]− instead of F− anions in all cases. The RE 3+ cations are coordinated by 9 + 2 anions at distances between 236 and 254 pm plus 326 pm to F− anions and oxygen atoms bonded to carbon as oxocarbonate anions [CO3]2−. Triggered by ultraviolet radiation, the bulk sample of EuF[CO3] shows a poor red luminescence.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.