M. L. Sørensen, P. Nystrup, M. B. Bjerregård, J. Møller, P. Bacher, H. Madsen
{"title":"风能和太阳能多变量预测的最新进展","authors":"M. L. Sørensen, P. Nystrup, M. B. Bjerregård, J. Møller, P. Bacher, H. Madsen","doi":"10.1002/wene.465","DOIUrl":null,"url":null,"abstract":"The intermittency of renewable energy sources, such as wind and solar, means that they require reliable and accurate forecasts to integrate properly into energy systems. This review introduces and examines a selection of state‐of‐the‐art methods that are applied for multivariate forecasting of wind and solar power production. Methods such as conditional parametric and combined forecasting already see wide use in practice, both commercially and scientifically. In the context of multivariate forecasting, it is vital to model the dependence between forecasts correctly. In recent years, reconciliation of forecasts to ensure coherency across spatial and temporal aggregation levels has shown great promise in increasing the accuracy of renewable energy forecasts. We introduce the methodology used for forecast reconciliation and review some recent applications for wind and solar power forecasting. Many forecasters are beginning to see the benefit of the greater information provided by probabilistic forecasts. We highlight stochastic differential equations as a method for probabilistic forecasting, which can also model the dependence structure. Lastly, we discuss forecast evaluation and how choosing a proper approach to evaluation is vital to avoid misrepresenting forecasts.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Recent developments in multivariate wind and solar power forecasting\",\"authors\":\"M. L. Sørensen, P. Nystrup, M. B. Bjerregård, J. Møller, P. Bacher, H. Madsen\",\"doi\":\"10.1002/wene.465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intermittency of renewable energy sources, such as wind and solar, means that they require reliable and accurate forecasts to integrate properly into energy systems. This review introduces and examines a selection of state‐of‐the‐art methods that are applied for multivariate forecasting of wind and solar power production. Methods such as conditional parametric and combined forecasting already see wide use in practice, both commercially and scientifically. In the context of multivariate forecasting, it is vital to model the dependence between forecasts correctly. In recent years, reconciliation of forecasts to ensure coherency across spatial and temporal aggregation levels has shown great promise in increasing the accuracy of renewable energy forecasts. We introduce the methodology used for forecast reconciliation and review some recent applications for wind and solar power forecasting. Many forecasters are beginning to see the benefit of the greater information provided by probabilistic forecasts. We highlight stochastic differential equations as a method for probabilistic forecasting, which can also model the dependence structure. Lastly, we discuss forecast evaluation and how choosing a proper approach to evaluation is vital to avoid misrepresenting forecasts.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.465\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Recent developments in multivariate wind and solar power forecasting
The intermittency of renewable energy sources, such as wind and solar, means that they require reliable and accurate forecasts to integrate properly into energy systems. This review introduces and examines a selection of state‐of‐the‐art methods that are applied for multivariate forecasting of wind and solar power production. Methods such as conditional parametric and combined forecasting already see wide use in practice, both commercially and scientifically. In the context of multivariate forecasting, it is vital to model the dependence between forecasts correctly. In recent years, reconciliation of forecasts to ensure coherency across spatial and temporal aggregation levels has shown great promise in increasing the accuracy of renewable energy forecasts. We introduce the methodology used for forecast reconciliation and review some recent applications for wind and solar power forecasting. Many forecasters are beginning to see the benefit of the greater information provided by probabilistic forecasts. We highlight stochastic differential equations as a method for probabilistic forecasting, which can also model the dependence structure. Lastly, we discuss forecast evaluation and how choosing a proper approach to evaluation is vital to avoid misrepresenting forecasts.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.