基于社区能源需求的独立太阳能-光伏-风能-沼气混合可再生能源系统的技术经济分析

Q1 Engineering Future Cities and Environment Pub Date : 2019-11-07 DOI:10.5334/fce.72
Vijay Mudgal, K. Reddy, T. Mallick
{"title":"基于社区能源需求的独立太阳能-光伏-风能-沼气混合可再生能源系统的技术经济分析","authors":"Vijay Mudgal, K. Reddy, T. Mallick","doi":"10.5334/fce.72","DOIUrl":null,"url":null,"abstract":"Integrated renewable energy system (IRES) is integration of different energy sources to provide uninterrupted and viable solution for electrification especially for areas not connected to main grid due to difficult terrain and economic reasons. IRES has many advantages like non-depleting, non-polluting nature, better load matching and better renewable energy utilization. In the present study, mathematical modelling, size optimization and techno-economic analysis of standalone IRES have been carried out. Hybrid system is modelled to have maximum contribution from wind and solar energy with minimum net present cost (NPC) of system to meet electric load demand of CRC building, IIT Madras, India (13.01°N and 80.24°E). The results show that most feasible system configuration consists of 12 kW Photovoltaics, 3 kW wind turbine and 15 kW biogas generator with NPC and cost of energy equal to $ 117,098 and $ 0.09/kWh respectively. The IRES generates 71,826 kWh of energy to meet AC load of 64,396 kWh per year. The capacity factor and percentage contribution of PV, wind turbine and biogas generator are 17.8%, 6.57%, 39.1% and 26%, 2.4%, 71.6% respectively. The paper also presents sensitivity analysis of hybrid system with variation in capital cost of different components.","PeriodicalId":36755,"journal":{"name":"Future Cities and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Techno-Economic Analysis of Standalone Solar Photovoltaic-Wind-Biogas Hybrid Renewable Energy System for Community Energy Requirement\",\"authors\":\"Vijay Mudgal, K. Reddy, T. Mallick\",\"doi\":\"10.5334/fce.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated renewable energy system (IRES) is integration of different energy sources to provide uninterrupted and viable solution for electrification especially for areas not connected to main grid due to difficult terrain and economic reasons. IRES has many advantages like non-depleting, non-polluting nature, better load matching and better renewable energy utilization. In the present study, mathematical modelling, size optimization and techno-economic analysis of standalone IRES have been carried out. Hybrid system is modelled to have maximum contribution from wind and solar energy with minimum net present cost (NPC) of system to meet electric load demand of CRC building, IIT Madras, India (13.01°N and 80.24°E). The results show that most feasible system configuration consists of 12 kW Photovoltaics, 3 kW wind turbine and 15 kW biogas generator with NPC and cost of energy equal to $ 117,098 and $ 0.09/kWh respectively. The IRES generates 71,826 kWh of energy to meet AC load of 64,396 kWh per year. The capacity factor and percentage contribution of PV, wind turbine and biogas generator are 17.8%, 6.57%, 39.1% and 26%, 2.4%, 71.6% respectively. The paper also presents sensitivity analysis of hybrid system with variation in capital cost of different components.\",\"PeriodicalId\":36755,\"journal\":{\"name\":\"Future Cities and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Cities and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/fce.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Cities and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/fce.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 23

摘要

综合可再生能源系统(IRES)是将不同的能源整合在一起,为电气化提供不间断的、可行的解决方案,特别是对于由于复杂的地形和经济原因而没有连接到主电网的地区。IRES具有不耗电、无污染、负荷匹配性好、可再生能源利用率高等优点。在本研究中,对独立的IRES进行了数学建模、尺寸优化和技术经济分析。混合系统建模为风能和太阳能贡献最大,系统净当前成本(NPC)最小,以满足印度IIT马德拉斯CRC大楼(13.01°N和80.24°E)的电力负荷需求。结果表明,最可行的系统配置由12 kW光伏发电、3 kW风力发电和15 kW沼气发电组成,NPC和能源成本分别为117,098美元和0.09美元/kWh。IRES每年产生71,826千瓦时的能量,以满足64,396千瓦时的交流负荷。光伏发电、风力发电和沼气发电的容量系数和贡献率分别为17.8%、6.57%、39.1%和26%、2.4%、71.6%。本文还对混合动力系统在不同部件资本成本变化情况下的敏感性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techno-Economic Analysis of Standalone Solar Photovoltaic-Wind-Biogas Hybrid Renewable Energy System for Community Energy Requirement
Integrated renewable energy system (IRES) is integration of different energy sources to provide uninterrupted and viable solution for electrification especially for areas not connected to main grid due to difficult terrain and economic reasons. IRES has many advantages like non-depleting, non-polluting nature, better load matching and better renewable energy utilization. In the present study, mathematical modelling, size optimization and techno-economic analysis of standalone IRES have been carried out. Hybrid system is modelled to have maximum contribution from wind and solar energy with minimum net present cost (NPC) of system to meet electric load demand of CRC building, IIT Madras, India (13.01°N and 80.24°E). The results show that most feasible system configuration consists of 12 kW Photovoltaics, 3 kW wind turbine and 15 kW biogas generator with NPC and cost of energy equal to $ 117,098 and $ 0.09/kWh respectively. The IRES generates 71,826 kWh of energy to meet AC load of 64,396 kWh per year. The capacity factor and percentage contribution of PV, wind turbine and biogas generator are 17.8%, 6.57%, 39.1% and 26%, 2.4%, 71.6% respectively. The paper also presents sensitivity analysis of hybrid system with variation in capital cost of different components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Cities and Environment
Future Cities and Environment Engineering-Architecture
CiteScore
3.10
自引率
0.00%
发文量
7
审稿时长
17 weeks
期刊最新文献
A Generative Design Approach to Improving the Environmental Performance of Educational Buildings in Hot Arid Climates. (Assiut National University as a Case Study) Using Green Roofs for Social Housing to Improve Energy Consumption in New Cities. (An Applied Study of Social Housing in Egypt’s New Cairo City) Zero Touch in Fog, IoT, and MANET for Enhanced Smart City Applications: A Survey Comparison of Energy Production Between Fixed-Mount and Tracking Systems of Solar PV Systems in Jakarta, Indonesia Designing Ecological Floating Wetlands to Optimize Ecosystem Services for Urban Resilience in Tropical Climates: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1