Jaipal Devesing Girase, Sandhya Rani Nayak, Jairam Tagare, Shahnawaz, Mangey Ram Nagar, J. Jou, S. Vaidyanathan
{"title":"用于OLED的基于三苯胺咪唑(供体-受体)的溶液处理深蓝(y~0.06)荧光团:计算和实验探索","authors":"Jaipal Devesing Girase, Sandhya Rani Nayak, Jairam Tagare, Shahnawaz, Mangey Ram Nagar, J. Jou, S. Vaidyanathan","doi":"10.1080/15980316.2021.1959429","DOIUrl":null,"url":null,"abstract":"Developing solution-processable deep-blue emitters for organic light-emitting diodes (OLEDs) is still a challenging task. In this context, two new solution-processable deep-blue emitters, N, N-diphenyl-4’-(1-(3-(trifluoromethyl)phenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)-[1,1’-biphenyl]-4-amine(4-PIMCFTPA) and 4’-(4,5-diphenyl-1-(3-(trifluoromethyl)phenyl)-1H-imidazol-2-yl)-N,N-diphenyl-[1,1’-biphenyl]-4-amine (4-BICFTPA), were successfully designed and synthesized by incorporating phenanthroimidazole (PI)/diphenylimidazole (BI)-triphenylamine (TPA), which is functional at the N1 position of the imidazole, with Ph-mCF3. The thermal, photophysical, and electrochemical properties of both fluorophores were systematically explored. These fluorophores showed a deep-blue emission in the solution as well as in the solid state. The highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy level of the fluorophores was calculated using electrochemical studies and compared with the theoretical calculation [the density functional theory (DFT)]. The asymmetrically twisted conformation of 4-PIMCFTPA between PI-TPA efficiently showed a high photoluminescence quantum yield. OLED (undoped and doped) devices were fabricated with the newly synthesized emitters, and 4-PIMCFTPA demonstrated better electroluminescence (EL) performance than the BI-based emitter. Thus, the OLED based on 4-PIMCFTPA (1 wt% in the CBP host) had the best EL performance, with a maximum external quantum efficiency 1.7% and CIE coordinates of (0.17, 0.06).","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"23 1","pages":"53 - 67"},"PeriodicalIF":3.7000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15980316.2021.1959429","citationCount":"14","resultStr":"{\"title\":\"Solution-processed deep-blue (y∼0.06) fluorophores based on triphenylamine-imidazole (donor-acceptor) for OLEDs: computational and experimental exploration\",\"authors\":\"Jaipal Devesing Girase, Sandhya Rani Nayak, Jairam Tagare, Shahnawaz, Mangey Ram Nagar, J. Jou, S. Vaidyanathan\",\"doi\":\"10.1080/15980316.2021.1959429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing solution-processable deep-blue emitters for organic light-emitting diodes (OLEDs) is still a challenging task. In this context, two new solution-processable deep-blue emitters, N, N-diphenyl-4’-(1-(3-(trifluoromethyl)phenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)-[1,1’-biphenyl]-4-amine(4-PIMCFTPA) and 4’-(4,5-diphenyl-1-(3-(trifluoromethyl)phenyl)-1H-imidazol-2-yl)-N,N-diphenyl-[1,1’-biphenyl]-4-amine (4-BICFTPA), were successfully designed and synthesized by incorporating phenanthroimidazole (PI)/diphenylimidazole (BI)-triphenylamine (TPA), which is functional at the N1 position of the imidazole, with Ph-mCF3. The thermal, photophysical, and electrochemical properties of both fluorophores were systematically explored. These fluorophores showed a deep-blue emission in the solution as well as in the solid state. The highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy level of the fluorophores was calculated using electrochemical studies and compared with the theoretical calculation [the density functional theory (DFT)]. The asymmetrically twisted conformation of 4-PIMCFTPA between PI-TPA efficiently showed a high photoluminescence quantum yield. OLED (undoped and doped) devices were fabricated with the newly synthesized emitters, and 4-PIMCFTPA demonstrated better electroluminescence (EL) performance than the BI-based emitter. Thus, the OLED based on 4-PIMCFTPA (1 wt% in the CBP host) had the best EL performance, with a maximum external quantum efficiency 1.7% and CIE coordinates of (0.17, 0.06).\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":\"23 1\",\"pages\":\"53 - 67\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15980316.2021.1959429\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2021.1959429\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2021.1959429","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Solution-processed deep-blue (y∼0.06) fluorophores based on triphenylamine-imidazole (donor-acceptor) for OLEDs: computational and experimental exploration
Developing solution-processable deep-blue emitters for organic light-emitting diodes (OLEDs) is still a challenging task. In this context, two new solution-processable deep-blue emitters, N, N-diphenyl-4’-(1-(3-(trifluoromethyl)phenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)-[1,1’-biphenyl]-4-amine(4-PIMCFTPA) and 4’-(4,5-diphenyl-1-(3-(trifluoromethyl)phenyl)-1H-imidazol-2-yl)-N,N-diphenyl-[1,1’-biphenyl]-4-amine (4-BICFTPA), were successfully designed and synthesized by incorporating phenanthroimidazole (PI)/diphenylimidazole (BI)-triphenylamine (TPA), which is functional at the N1 position of the imidazole, with Ph-mCF3. The thermal, photophysical, and electrochemical properties of both fluorophores were systematically explored. These fluorophores showed a deep-blue emission in the solution as well as in the solid state. The highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy level of the fluorophores was calculated using electrochemical studies and compared with the theoretical calculation [the density functional theory (DFT)]. The asymmetrically twisted conformation of 4-PIMCFTPA between PI-TPA efficiently showed a high photoluminescence quantum yield. OLED (undoped and doped) devices were fabricated with the newly synthesized emitters, and 4-PIMCFTPA demonstrated better electroluminescence (EL) performance than the BI-based emitter. Thus, the OLED based on 4-PIMCFTPA (1 wt% in the CBP host) had the best EL performance, with a maximum external quantum efficiency 1.7% and CIE coordinates of (0.17, 0.06).