磁铁矿(Ha-Fe3O4)对泥炭土腐植酸的声化学改性金回收研究

Maya Rahmayanti, S. J. Santosa, S. Sutarno
{"title":"磁铁矿(Ha-Fe3O4)对泥炭土腐植酸的声化学改性金回收研究","authors":"Maya Rahmayanti, S. J. Santosa, S. Sutarno","doi":"10.15294/JBAT.V9I02.26131","DOIUrl":null,"url":null,"abstract":"Sonochemical technology is a technology that involves ultrasonic waves in chemical reactions. In this study, humic acid isolated from peat soil has been successfully modified with magnetite (HA-Fe3O4) using sonochemical technology. Characterization of the physical and chemical properties of HA-Fe3O4 was carried out using FTIR, XRD, SEM and VSM. HA-Fe3O4 was used for recovery of gold from simulated gold waste (HAuCl4). FTIR characterization showed that the interaction between HA and Fe3O4 was through hydrogen bonds. The crystal size of HA-Fe3O4 using the Debye-Scherrer equation based on the XRD diffractogram was 12.4 nm. The saturation magnetization value of HA-Fe3O4 obtained was 52.80 emu/g. Adsorption studies at various pH showed that HA-Fe3O4 has been successful in recovering of gold from simulated gold waste. The % recovery of gold was 99%. Gold recovery occurs through the adsorption process followed by reduction of Au (III) to Au(0).","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modified Humic Acid from Peat Soils with Magnetite (Ha-Fe3O4) by Using Sonochemical Technology for Gold Recovery\",\"authors\":\"Maya Rahmayanti, S. J. Santosa, S. Sutarno\",\"doi\":\"10.15294/JBAT.V9I02.26131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonochemical technology is a technology that involves ultrasonic waves in chemical reactions. In this study, humic acid isolated from peat soil has been successfully modified with magnetite (HA-Fe3O4) using sonochemical technology. Characterization of the physical and chemical properties of HA-Fe3O4 was carried out using FTIR, XRD, SEM and VSM. HA-Fe3O4 was used for recovery of gold from simulated gold waste (HAuCl4). FTIR characterization showed that the interaction between HA and Fe3O4 was through hydrogen bonds. The crystal size of HA-Fe3O4 using the Debye-Scherrer equation based on the XRD diffractogram was 12.4 nm. The saturation magnetization value of HA-Fe3O4 obtained was 52.80 emu/g. Adsorption studies at various pH showed that HA-Fe3O4 has been successful in recovering of gold from simulated gold waste. The % recovery of gold was 99%. Gold recovery occurs through the adsorption process followed by reduction of Au (III) to Au(0).\",\"PeriodicalId\":17764,\"journal\":{\"name\":\"Jurnal Bahan Alam Terbarukan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Bahan Alam Terbarukan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/JBAT.V9I02.26131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/JBAT.V9I02.26131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

声化学技术是一种在化学反应中使用超声波的技术。本研究利用声化学技术成功地用磁铁矿(HA-Fe3O4)对泥炭土中分离的腐殖酸进行了改性。利用FTIR、XRD、SEM和VSM对HA-Fe3O4的理化性质进行了表征。HA-Fe3O4用于从模拟金废料(HAuCl4)中回收金。FTIR表征表明,HA与Fe3O4之间的相互作用是通过氢键进行的。使用基于XRD衍射图的Debye-Scherrer方程,HA-Fe3O4的晶体尺寸为12.4nm。所获得的HA-Fe3O4的饱和磁化值为52.80emu/g。在不同pH下的吸附研究表明,HA-Fe3O4成功地从模拟金废料中回收了金。金的回收率为99%。金的回收通过吸附过程进行,然后将Au(III)还原为Au(0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Humic Acid from Peat Soils with Magnetite (Ha-Fe3O4) by Using Sonochemical Technology for Gold Recovery
Sonochemical technology is a technology that involves ultrasonic waves in chemical reactions. In this study, humic acid isolated from peat soil has been successfully modified with magnetite (HA-Fe3O4) using sonochemical technology. Characterization of the physical and chemical properties of HA-Fe3O4 was carried out using FTIR, XRD, SEM and VSM. HA-Fe3O4 was used for recovery of gold from simulated gold waste (HAuCl4). FTIR characterization showed that the interaction between HA and Fe3O4 was through hydrogen bonds. The crystal size of HA-Fe3O4 using the Debye-Scherrer equation based on the XRD diffractogram was 12.4 nm. The saturation magnetization value of HA-Fe3O4 obtained was 52.80 emu/g. Adsorption studies at various pH showed that HA-Fe3O4 has been successful in recovering of gold from simulated gold waste. The % recovery of gold was 99%. Gold recovery occurs through the adsorption process followed by reduction of Au (III) to Au(0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition Optimization of Operating Condition for the Production of Edible Film from Cuttlefish’s Bone Gelatin as Instant Noodle Seasoning Packaging Preparation of Composite Reinforced Agent Based on Sweet Sorghum Stalk Fiber through Alkali Pressure Steam Treated Method The Properties of Particleboard Composites Made from Pleurotus ostreatus Baglog Waste Using Citric Acid and Sucrose Adhesive Optimization of Glycerolysis of Free Fatty Acids from Cocoa Bean with MgO Catalyst Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1