A. Gharebaghi, M. Abolfazl Mostafavi, C. Larouche, K. Esmaeili, Martin Genon
{"title":"精确的室内定位和测绘使用移动激光扫描仪:范围审查","authors":"A. Gharebaghi, M. Abolfazl Mostafavi, C. Larouche, K. Esmaeili, Martin Genon","doi":"10.1139/geomat-2021-0011","DOIUrl":null,"url":null,"abstract":"Indoor localization and mapping are essential for a wide range of applications. The absence of GPS signals in indoor environments such as buildings, caves, and tunnels brings significant challenges for applications where accurate positioning (i.e., centimeter-level accuracy) is required. This paper presents a scoping review of the most recent studies on precise indoor localization and mapping using mobile technologies, specifically, mobile laser scanners. The scoping review allows for a comprehensive and structured review of the literature to maximize the capture of relevant information and provide reproducible results. We extracted and reported a range of information from the selected articles published since 2009, with the goal of identifying the most frequently used sensors and methods of fusing their collected observations. The results show that in the majority of studies, LiDAR is the core sensor and IMUs with 75% and odometers with 67% magnitude are the main sensors integrated with the LiDAR system to enhance the localization precision. In addition, the classical iterative closest point (ICP) algorithm with approximately 60% frequency and the extended Kalman filter (EKF) method with over 40% frequency are the main algorithms used for the scan matching and fusion of different sensor data, respectively. This scoping review also revealed the lack of mapping-systems calibration as the main limitation in over 70% of the papers analyzed.","PeriodicalId":35938,"journal":{"name":"Geomatica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Precise indoor localization and mapping using mobile laser scanners: a scoping review\",\"authors\":\"A. Gharebaghi, M. Abolfazl Mostafavi, C. Larouche, K. Esmaeili, Martin Genon\",\"doi\":\"10.1139/geomat-2021-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization and mapping are essential for a wide range of applications. The absence of GPS signals in indoor environments such as buildings, caves, and tunnels brings significant challenges for applications where accurate positioning (i.e., centimeter-level accuracy) is required. This paper presents a scoping review of the most recent studies on precise indoor localization and mapping using mobile technologies, specifically, mobile laser scanners. The scoping review allows for a comprehensive and structured review of the literature to maximize the capture of relevant information and provide reproducible results. We extracted and reported a range of information from the selected articles published since 2009, with the goal of identifying the most frequently used sensors and methods of fusing their collected observations. The results show that in the majority of studies, LiDAR is the core sensor and IMUs with 75% and odometers with 67% magnitude are the main sensors integrated with the LiDAR system to enhance the localization precision. In addition, the classical iterative closest point (ICP) algorithm with approximately 60% frequency and the extended Kalman filter (EKF) method with over 40% frequency are the main algorithms used for the scan matching and fusion of different sensor data, respectively. This scoping review also revealed the lack of mapping-systems calibration as the main limitation in over 70% of the papers analyzed.\",\"PeriodicalId\":35938,\"journal\":{\"name\":\"Geomatica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/geomat-2021-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/geomat-2021-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Precise indoor localization and mapping using mobile laser scanners: a scoping review
Indoor localization and mapping are essential for a wide range of applications. The absence of GPS signals in indoor environments such as buildings, caves, and tunnels brings significant challenges for applications where accurate positioning (i.e., centimeter-level accuracy) is required. This paper presents a scoping review of the most recent studies on precise indoor localization and mapping using mobile technologies, specifically, mobile laser scanners. The scoping review allows for a comprehensive and structured review of the literature to maximize the capture of relevant information and provide reproducible results. We extracted and reported a range of information from the selected articles published since 2009, with the goal of identifying the most frequently used sensors and methods of fusing their collected observations. The results show that in the majority of studies, LiDAR is the core sensor and IMUs with 75% and odometers with 67% magnitude are the main sensors integrated with the LiDAR system to enhance the localization precision. In addition, the classical iterative closest point (ICP) algorithm with approximately 60% frequency and the extended Kalman filter (EKF) method with over 40% frequency are the main algorithms used for the scan matching and fusion of different sensor data, respectively. This scoping review also revealed the lack of mapping-systems calibration as the main limitation in over 70% of the papers analyzed.
GeomaticaSocial Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍:
Geomatica (formerly CISM Journal ACSGC), is the official quarterly publication of the Canadian Institute of Geomatics. It is the oldest surveying and mapping publication in Canada and was first published in 1922 as the Journal of the Dominion Land Surveyors’ Association. Geomatica is dedicated to the dissemination of information on technical advances in the geomatics sciences. The internationally respected publication contains special features, notices of conferences, calendar of event, articles on personalities, review of current books, industry news and new products, all of which keep the publication lively and informative.