单调缺失数据生长曲线模型的极大似然估计

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-08-03 DOI:10.1080/01966324.2020.1791290
Ayaka Yagi, T. Seo, Y. Fujikoshi
{"title":"单调缺失数据生长曲线模型的极大似然估计","authors":"Ayaka Yagi, T. Seo, Y. Fujikoshi","doi":"10.1080/01966324.2020.1791290","DOIUrl":null,"url":null,"abstract":"Abstract This article focuses on the maximum likelihood estimators (MLEs) of the mean parameter vector and the covariance matrix in a one-sample version of the growth curve model when the dataset has a monotone missing pattern. First, a closed form is obtained for the MLE of the mean parameter vector when the covariance matrix is known. Similarly, it is obtained for the MLE of the covariance matrix when the mean parameter vector is known. The distributions of these estimators and their basic properties are also given. Then, considering that these expressions give the likelihood or determining equations, we propose an algorithm that includes an iterative procedure to obtain the MLEs when all the parameters are unknown. Further, a conventional estimator for the mean parameter vector is also proposed. Finally, a numerical example is given to illustrate our estimation procedure.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2020.1791290","citationCount":"1","resultStr":"{\"title\":\"Maximum Likelihood Estimators in Growth Curve Model with Monotone Missing Data\",\"authors\":\"Ayaka Yagi, T. Seo, Y. Fujikoshi\",\"doi\":\"10.1080/01966324.2020.1791290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article focuses on the maximum likelihood estimators (MLEs) of the mean parameter vector and the covariance matrix in a one-sample version of the growth curve model when the dataset has a monotone missing pattern. First, a closed form is obtained for the MLE of the mean parameter vector when the covariance matrix is known. Similarly, it is obtained for the MLE of the covariance matrix when the mean parameter vector is known. The distributions of these estimators and their basic properties are also given. Then, considering that these expressions give the likelihood or determining equations, we propose an algorithm that includes an iterative procedure to obtain the MLEs when all the parameters are unknown. Further, a conventional estimator for the mean parameter vector is also proposed. Finally, a numerical example is given to illustrate our estimation procedure.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"40 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2020.1791290\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2020.1791290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2020.1791290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文重点研究了当数据集具有单调缺失模式时,增长曲线模型的单样本版本中平均参数向量和协方差矩阵的最大似然估计量。首先,当协方差矩阵已知时,获得平均参数向量的MLE的闭合形式。类似地,当平均参数向量已知时,它是针对协方差矩阵的MLE获得的。给出了这些估计量的分布及其基本性质。然后,考虑到这些表达式给出了似然性或确定方程,我们提出了一种算法,该算法包括在所有参数未知时获得MLE的迭代过程。此外,还提出了一种用于平均参数向量的传统估计器。最后,给出了一个数值例子来说明我们的估计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Likelihood Estimators in Growth Curve Model with Monotone Missing Data
Abstract This article focuses on the maximum likelihood estimators (MLEs) of the mean parameter vector and the covariance matrix in a one-sample version of the growth curve model when the dataset has a monotone missing pattern. First, a closed form is obtained for the MLE of the mean parameter vector when the covariance matrix is known. Similarly, it is obtained for the MLE of the covariance matrix when the mean parameter vector is known. The distributions of these estimators and their basic properties are also given. Then, considering that these expressions give the likelihood or determining equations, we propose an algorithm that includes an iterative procedure to obtain the MLEs when all the parameters are unknown. Further, a conventional estimator for the mean parameter vector is also proposed. Finally, a numerical example is given to illustrate our estimation procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1