随机微观结构的有限维模型

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2022-05-16 DOI:10.1090/tpms/1168
M. Grigoriu
{"title":"随机微观结构的有限维模型","authors":"M. Grigoriu","doi":"10.1090/tpms/1168","DOIUrl":null,"url":null,"abstract":"<p>Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and construct approximations of solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of ordinary or partial differential equations whose random coefficients depend on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. FD models of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for two types of random fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a simple stochastic equation. Some of these conditions are illustrated by numerical examples.</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finite dimensional models for random microstructures\",\"authors\":\"M. Grigoriu\",\"doi\":\"10.1090/tpms/1168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and construct approximations of solutions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>U</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of ordinary or partial differential equations whose random coefficients depend on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. FD models of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>U</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>U</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for two types of random fields <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Z left-parenthesis x right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>Z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Z(x)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and a simple stochastic equation. Some of these conditions are illustrated by numerical examples.</p>\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

有限维(FD)模型,即取决于随机变量的有限集合的空间的确定性函数,在应用中被广泛地用于生成随机场Z(x)Z(x)的样本,并构造其随机系数取决于Z(x。Z(x)Z(x)和U(x)U(x)的FD模型构成了这些随机场的替代物,这些随机场以各种性质为目标,例如,均值/相关函数或样本性质。我们建立了FD模型的样本可以用作两种类型的随机场Z(x)Z(x)和一个简单随机方程的Z(x,Z(x,Z)和U(x)U(x)样本的替代品的条件。其中一些条件通过数值例子加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite dimensional models for random microstructures

Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields Z ( x ) Z(x) and construct approximations of solutions U ( x ) U(x) of ordinary or partial differential equations whose random coefficients depend on Z ( x ) Z(x) . FD models of Z ( x ) Z(x) and U ( x ) U(x) constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of Z ( x ) Z(x) and U ( x ) U(x) for two types of random fields Z ( x ) Z(x) and a simple stochastic equation. Some of these conditions are illustrated by numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1