{"title":"2021年日本福冈火山喷发的浮石碎屑种类","authors":"Kenta Yoshida, Yoshihiko Tamura, Tomoki Sato, Takeshi Hanyu, Yoichi Usui, Qing Chang, Shigeaki Ono","doi":"10.1111/iar.12441","DOIUrl":null,"url":null,"abstract":"<p>Pumice rafts that arrived at the Nansei Islands, Japan, provided a unique opportunity to investigate the Fukutoku-Oka-no-Ba (FOB) eruption of August 2021. Despite drifting for 2 months for ~1300 km, the drift pumice raft had a large volume and contained a variety of pumice clasts, some of which were deposited during a high tide in a typhoon, while others were washed up on a sandy beach. Most of the drift pumice clasts are gray in color, vesicular, and have a groundmass containing black enclaves. Rare black pumice and the main gray pumice components have similar trachytic compositions, with SiO<sub>2</sub> = 61–62 mass% and total alkalis = 8.6–10 mass% (on an anhydrous basis). Both pumice types contain clinopyroxene, plagioclase, and rare olivine phenocrysts. Thin-section observations show that the gray pumice has more elongated vesicles as compared with the black pumice that has spherical vesicles, even where the two types of pumice are in the same clast. The glass in the black pumice is transparent and brown in color, while that in the gray pumice is colorless. No micro or nano-crystals were observed during electron and optical microscopy. Raman spectra of the brown-colored glass exhibit a clear magnetite peak, suggesting magnetite nanolites cause the brown color. High-Mg olivine in the black pumice has an equilibrium temperature of c. 1200 °C and a rim diffusion profile indicative of re-equilibration with the surrounding melt over a period of hours to days. The textural relationships between the gray and black pumice suggest that the black pumice had become black and viscous before the two types of pumice mixed. Therefore, crystallization of magnetite nanolites and a corresponding increase in melt viscosity were important in the eruption preparation process, which then resulted in a large-scale Plinian eruption.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12441","citationCount":"21","resultStr":"{\"title\":\"Variety of the drift pumice clasts from the 2021 Fukutoku-Oka-no-Ba eruption, Japan\",\"authors\":\"Kenta Yoshida, Yoshihiko Tamura, Tomoki Sato, Takeshi Hanyu, Yoichi Usui, Qing Chang, Shigeaki Ono\",\"doi\":\"10.1111/iar.12441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pumice rafts that arrived at the Nansei Islands, Japan, provided a unique opportunity to investigate the Fukutoku-Oka-no-Ba (FOB) eruption of August 2021. Despite drifting for 2 months for ~1300 km, the drift pumice raft had a large volume and contained a variety of pumice clasts, some of which were deposited during a high tide in a typhoon, while others were washed up on a sandy beach. Most of the drift pumice clasts are gray in color, vesicular, and have a groundmass containing black enclaves. Rare black pumice and the main gray pumice components have similar trachytic compositions, with SiO<sub>2</sub> = 61–62 mass% and total alkalis = 8.6–10 mass% (on an anhydrous basis). Both pumice types contain clinopyroxene, plagioclase, and rare olivine phenocrysts. Thin-section observations show that the gray pumice has more elongated vesicles as compared with the black pumice that has spherical vesicles, even where the two types of pumice are in the same clast. The glass in the black pumice is transparent and brown in color, while that in the gray pumice is colorless. No micro or nano-crystals were observed during electron and optical microscopy. Raman spectra of the brown-colored glass exhibit a clear magnetite peak, suggesting magnetite nanolites cause the brown color. High-Mg olivine in the black pumice has an equilibrium temperature of c. 1200 °C and a rim diffusion profile indicative of re-equilibration with the surrounding melt over a period of hours to days. The textural relationships between the gray and black pumice suggest that the black pumice had become black and viscous before the two types of pumice mixed. Therefore, crystallization of magnetite nanolites and a corresponding increase in melt viscosity were important in the eruption preparation process, which then resulted in a large-scale Plinian eruption.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.12441\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12441\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12441","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Variety of the drift pumice clasts from the 2021 Fukutoku-Oka-no-Ba eruption, Japan
Pumice rafts that arrived at the Nansei Islands, Japan, provided a unique opportunity to investigate the Fukutoku-Oka-no-Ba (FOB) eruption of August 2021. Despite drifting for 2 months for ~1300 km, the drift pumice raft had a large volume and contained a variety of pumice clasts, some of which were deposited during a high tide in a typhoon, while others were washed up on a sandy beach. Most of the drift pumice clasts are gray in color, vesicular, and have a groundmass containing black enclaves. Rare black pumice and the main gray pumice components have similar trachytic compositions, with SiO2 = 61–62 mass% and total alkalis = 8.6–10 mass% (on an anhydrous basis). Both pumice types contain clinopyroxene, plagioclase, and rare olivine phenocrysts. Thin-section observations show that the gray pumice has more elongated vesicles as compared with the black pumice that has spherical vesicles, even where the two types of pumice are in the same clast. The glass in the black pumice is transparent and brown in color, while that in the gray pumice is colorless. No micro or nano-crystals were observed during electron and optical microscopy. Raman spectra of the brown-colored glass exhibit a clear magnetite peak, suggesting magnetite nanolites cause the brown color. High-Mg olivine in the black pumice has an equilibrium temperature of c. 1200 °C and a rim diffusion profile indicative of re-equilibration with the surrounding melt over a period of hours to days. The textural relationships between the gray and black pumice suggest that the black pumice had become black and viscous before the two types of pumice mixed. Therefore, crystallization of magnetite nanolites and a corresponding increase in melt viscosity were important in the eruption preparation process, which then resulted in a large-scale Plinian eruption.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.