因子增强QVAR模型:一种观察驱动的方法

IF 0.7 4区 经济学 Q3 ECONOMICS Macroeconomic Dynamics Pub Date : 2023-08-25 DOI:10.1017/s1365100523000330
Willy Alanya-Beltran
{"title":"因子增强QVAR模型:一种观察驱动的方法","authors":"Willy Alanya-Beltran","doi":"10.1017/s1365100523000330","DOIUrl":null,"url":null,"abstract":"\n I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic policy analysis in tumultuous times. An observation-driven framework that exploits the information from the score of the model allows a maximum likelihood estimation. This multivariate FAQVAR model, which assumes a Student t error distribution, is robust to atypical observations such as the global financial crisis and the recent pandemic. The model outperforms the FAVAR moving average model because of the assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses are stable when considering the sample before and during COVID-19.","PeriodicalId":18078,"journal":{"name":"Macroeconomic Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor-augmented QVAR models: an observation-driven approach\",\"authors\":\"Willy Alanya-Beltran\",\"doi\":\"10.1017/s1365100523000330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic policy analysis in tumultuous times. An observation-driven framework that exploits the information from the score of the model allows a maximum likelihood estimation. This multivariate FAQVAR model, which assumes a Student t error distribution, is robust to atypical observations such as the global financial crisis and the recent pandemic. The model outperforms the FAVAR moving average model because of the assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses are stable when considering the sample before and during COVID-19.\",\"PeriodicalId\":18078,\"journal\":{\"name\":\"Macroeconomic Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macroeconomic Dynamics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s1365100523000330\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomic Dynamics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s1365100523000330","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我开发和研究了一个因子增强的准向量自回归(FAQVAR)模型,用于经济政策分析在动荡时期。利用模型得分信息的观察驱动框架允许最大似然估计。这种假设Student t误差分布的多变量FAQVAR模型对全球金融危机和最近的大流行等非典型观测结果具有鲁棒性。该模型优于FAVAR移动平均模型,因为假设的重尾捕获了COVID-19非典型数据和其他湍流事件。对美国经济评估其货币政策的实证应用表明,在COVID-19之前和期间考虑样本时,估计和脉冲响应是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factor-augmented QVAR models: an observation-driven approach
I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic policy analysis in tumultuous times. An observation-driven framework that exploits the information from the score of the model allows a maximum likelihood estimation. This multivariate FAQVAR model, which assumes a Student t error distribution, is robust to atypical observations such as the global financial crisis and the recent pandemic. The model outperforms the FAVAR moving average model because of the assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses are stable when considering the sample before and during COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
11.10%
发文量
59
期刊介绍: Macroeconomic Dynamics publishes theoretical, empirical or quantitative research of the highest standard. Papers are welcomed from all areas of macroeconomics and from all parts of the world. Major advances in macroeconomics without immediate policy applications will also be accepted, if they show potential for application in the future. Occasional book reviews, announcements, conference proceedings, special issues, interviews, dialogues, and surveys are also published.
期刊最新文献
Nonseparability of credit card services within Divisia monetary aggregates Money growth and inflation in the Euro Area, UK, and USA: measurement issues and recent results Is the working capital channel of the monetary policy quantitatively relevant? A structural estimation approach Uncertainty shocks and monetary policy rules in a small open economy Economic resilience and the dynamics of capital stock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1