Plantaricinα-螺旋在分子动力学模拟中的自发展开和再折叠

Shaomin Yan, Guang Wu
{"title":"Plantaricinα-螺旋在分子动力学模拟中的自发展开和再折叠","authors":"Shaomin Yan, Guang Wu","doi":"10.4236/cmb.2019.91003","DOIUrl":null,"url":null,"abstract":"Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.","PeriodicalId":70839,"journal":{"name":"计算分子生物学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous Unfolding and Refolding of Plantaricin α-Helix in Molecular Dynamics Simulation\",\"authors\":\"Shaomin Yan, Guang Wu\",\"doi\":\"10.4236/cmb.2019.91003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.\",\"PeriodicalId\":70839,\"journal\":{\"name\":\"计算分子生物学(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算分子生物学(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cmb.2019.91003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算分子生物学(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cmb.2019.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于对传统抗生素的耐药性增加,抗菌肽是有前景的治疗剂。抗菌肽通常折叠成α螺旋、β片和延伸/随机螺旋结构。α-螺旋抗菌肽在水溶液中通常是非结构化的,但在细菌膜上变成结构化的。α-螺旋结构允许划分到细菌膜中。因此,了解抗菌肽中α-螺旋结构的展开和重折叠机制具有重要意义。由于α-螺旋抗菌肽的快速性,对其展开和重折叠过程的研究并不容易。因此,分子模拟提供了一种观察和解释这一现象的方法。车前草素A是一种26氨基酸的抗微生物信息素肽,在生理条件下可自发展开和重折叠。本研究通过分子模拟的方法证明了植物素A的展开和重折叠,并讨论了其机制及其对Levinthal悖论的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spontaneous Unfolding and Refolding of Plantaricin α-Helix in Molecular Dynamics Simulation
Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4
期刊最新文献
Analysis of Differential Gene Expression and Core Canonical Pathways Involved in the Epithelial to Mesenchymal Transition of Triple Negative Breast Cancer Cells by Ingenuity Pathway Analysis. A Personalized Digital Code from Unique Genome Fingerprinting Pattern for Use in Identification and Application on Blockchain Computational Chemistry and Molecular Modeling Techniques for the Study of Micropeptin EI-964: Insights into Its Chemical Reactivity and Potential Pharmaceutical Properties Type-2 Diabetes Mellitus and Glucagon-Like Peptide-1 Receptor toward Predicting Possible Association A Study of Differential Gene Expression and Core Canonical Pathways Involved in Rhenium Ligand Treated Epithelial Mesenchymal Transition (EMT) Induced A549 Lung Cancer Cell Lines by INGENUITY Software System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1