Zigbee低功耗互补金属氧化物半导体低噪声放大器的优化设计

S. Manjula, R. Karthikeyan, S. Karthick, N. Logesh, M. Logeshkumar
{"title":"Zigbee低功耗互补金属氧化物半导体低噪声放大器的优化设计","authors":"S. Manjula, R. Karthikeyan, S. Karthick, N. Logesh, M. Logeshkumar","doi":"10.1166/JCTN.2021.9387","DOIUrl":null,"url":null,"abstract":"An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented\n for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator.\n The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1327-1330"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Design of Low Power Complementary Metal Oxide Semiconductor Low Noise Amplifier for Zigbee Application\",\"authors\":\"S. Manjula, R. Karthikeyan, S. Karthick, N. Logesh, M. Logeshkumar\",\"doi\":\"10.1166/JCTN.2021.9387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented\\n for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator.\\n The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"18 1\",\"pages\":\"1327-1330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2021.9387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于2.4 GHz频率的90 nm CMOS高增益低功耗低噪声放大器(LNA)。为了达到预期的设计指标,采用粒子群优化(PSO)对LNA进行了优化。在满足增益、功耗、线性度和稳定性等所有设计指标的情况下,成功实现了PSO对噪声系数(NF)的优化。在MATLAB中开发了PSO算法对LNA参数进行优化。采用先进设计系统(ADS)模拟器对参数优化后的LNA进行了仿真。优化后的LNA在1.2 V供电电压下,功耗为1.02 mW,电压增益为21.470 dB,噪声系数为1.031 dB。通过与未采用粒子群优化的LNA的比较,证明了该优化方法在满足所有设计约束的情况下,提高了LNA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Design of Low Power Complementary Metal Oxide Semiconductor Low Noise Amplifier for Zigbee Application
An optimized high gain low power low noise amplifier (LNA) is presented using 90 nm CMOS process at 2.4 GHz frequency for Zigbee applications. For achieving desired design specifications, the LNA is optimized by particle swarm optimization (PSO). The PSO is successfully implemented for optimizing noise figure (NF) when satisfying all the design specifications such as gain, power dissipation, linearity and stability. PSO algorithm is developed in MATLAB to optimize the LNA parameters. The LNA with optimized parameters is simulated using Advanced Design System (ADS) Simulator. The LNA with optimized parameters produces 21.470 dB of voltage gain, 1.031 dB of noise figure at 1.02 mW power consumption with 1.2 V supply voltage. The comparison of designed LNA with and without PSO proves that the optimization improves the LNA results while satisfying all the design constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
期刊最新文献
The 'Insertion/Deletion' Polymorphism, rs4340 and Diabetes Risk: A Pilot Study from a Hospital Cohort. Reincluding: Providing Support to Reengage Youth who Truant in Secondary Schools. Eosinophil cationic protein (ECP) correlates with eosinophil cell counts in the induced sputum of elite swimmers. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. [Prognostic impact of prior cardiopathy in patients hospitalized with COVID-19 pneumonia].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1