{"title":"利用局域表面等离子体共振散射术监测纳米反应","authors":"Hyun-Soo Hwang, Hyunjoon Song","doi":"10.1063/5.0090949","DOIUrl":null,"url":null,"abstract":"Heterogeneous reactions are highly dependent upon the local structure and environment of the catalyst surface within a nanoscale. Among numerous techniques for monitoring heterogeneous reactions, dark-field microscopy offers reliable data regardless of specific reaction conditions. In addition, plasmonic nanoprobes provide high sensitivity in a sub-wavelength resolution due to localized surface plasmon resonances susceptible to the dielectric change of objects and surroundings. By clever reaction cell design and data analysis, nanoparticle signals can be parallelly analyzed under variable reaction conditions in a controlled manner. This technique effectively measures the heterogeneity of individual nanoparticles for reaction monitoring. A wide range of chemical and electrochemical reactions have been monitored in situ and in operando at a single-particle level in this way. The advancement of localized surface plasmon scatterometry with simulation techniques approaches sub-particle accuracy in a high temporal resolution up to microseconds. Combining other in situ spectroscopic methods would make dark-field scatterometry a versatile tool for various reaction monitoring and sensing applications.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanoscale reaction monitoring using localized surface plasmon resonance scatterometry\",\"authors\":\"Hyun-Soo Hwang, Hyunjoon Song\",\"doi\":\"10.1063/5.0090949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous reactions are highly dependent upon the local structure and environment of the catalyst surface within a nanoscale. Among numerous techniques for monitoring heterogeneous reactions, dark-field microscopy offers reliable data regardless of specific reaction conditions. In addition, plasmonic nanoprobes provide high sensitivity in a sub-wavelength resolution due to localized surface plasmon resonances susceptible to the dielectric change of objects and surroundings. By clever reaction cell design and data analysis, nanoparticle signals can be parallelly analyzed under variable reaction conditions in a controlled manner. This technique effectively measures the heterogeneity of individual nanoparticles for reaction monitoring. A wide range of chemical and electrochemical reactions have been monitored in situ and in operando at a single-particle level in this way. The advancement of localized surface plasmon scatterometry with simulation techniques approaches sub-particle accuracy in a high temporal resolution up to microseconds. Combining other in situ spectroscopic methods would make dark-field scatterometry a versatile tool for various reaction monitoring and sensing applications.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0090949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0090949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nanoscale reaction monitoring using localized surface plasmon resonance scatterometry
Heterogeneous reactions are highly dependent upon the local structure and environment of the catalyst surface within a nanoscale. Among numerous techniques for monitoring heterogeneous reactions, dark-field microscopy offers reliable data regardless of specific reaction conditions. In addition, plasmonic nanoprobes provide high sensitivity in a sub-wavelength resolution due to localized surface plasmon resonances susceptible to the dielectric change of objects and surroundings. By clever reaction cell design and data analysis, nanoparticle signals can be parallelly analyzed under variable reaction conditions in a controlled manner. This technique effectively measures the heterogeneity of individual nanoparticles for reaction monitoring. A wide range of chemical and electrochemical reactions have been monitored in situ and in operando at a single-particle level in this way. The advancement of localized surface plasmon scatterometry with simulation techniques approaches sub-particle accuracy in a high temporal resolution up to microseconds. Combining other in situ spectroscopic methods would make dark-field scatterometry a versatile tool for various reaction monitoring and sensing applications.