一种新的基于微阵列基因表达数据的肿瘤分类多目标混合基因选择算法

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computational Intelligence and Applications Pub Date : 2023-04-01 DOI:10.1142/s1469026823500190
Min Li, Bangyu Wu, Shaobo Deng, Mingzhu Lou
{"title":"一种新的基于微阵列基因表达数据的肿瘤分类多目标混合基因选择算法","authors":"Min Li, Bangyu Wu, Shaobo Deng, Mingzhu Lou","doi":"10.1142/s1469026823500190","DOIUrl":null,"url":null,"abstract":"Tumor classification based on microarray gene expression data is easy to fall into overfitting because such data are composed of many irrelevant, redundant, and noisy genes. Traditional gene selection methods cannot achieve satisfactory classification results. In this study, we propose a novel multi-target hybrid gene selection method named RMOGA (ReliefF Multi-Objective Genetic Algorithm), which aims to select a few genes and obtain good tumor recognition accuracy. RMOGA consists of two phases. Firstly, ReliefF is used to select the top 5% subset of genes from the original datasets. Secondly, a multi-objective genetic algorithm searches for the optimal gene subset from the gene subset obtained by the ReliefF method. To verify the validity of RMOGA, we conducted extensive experiments on 11 available microarray datasets and compared the proposed method with other previous methods. Two classical classifiers including Naive Bayes and Support Vector Machine were used to measure the classification performance of all comparison methods. Experimental results show that the RMOGA algorithm can yield significantly better results than previous state-of-the-art methods in terms of classification accuracy and the number of selected genes.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Multi-objective Hybrid Gene Selection Algorithm for Tumor Classification Based on Microarray Gene Expression Data\",\"authors\":\"Min Li, Bangyu Wu, Shaobo Deng, Mingzhu Lou\",\"doi\":\"10.1142/s1469026823500190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor classification based on microarray gene expression data is easy to fall into overfitting because such data are composed of many irrelevant, redundant, and noisy genes. Traditional gene selection methods cannot achieve satisfactory classification results. In this study, we propose a novel multi-target hybrid gene selection method named RMOGA (ReliefF Multi-Objective Genetic Algorithm), which aims to select a few genes and obtain good tumor recognition accuracy. RMOGA consists of two phases. Firstly, ReliefF is used to select the top 5% subset of genes from the original datasets. Secondly, a multi-objective genetic algorithm searches for the optimal gene subset from the gene subset obtained by the ReliefF method. To verify the validity of RMOGA, we conducted extensive experiments on 11 available microarray datasets and compared the proposed method with other previous methods. Two classical classifiers including Naive Bayes and Support Vector Machine were used to measure the classification performance of all comparison methods. Experimental results show that the RMOGA algorithm can yield significantly better results than previous state-of-the-art methods in terms of classification accuracy and the number of selected genes.\",\"PeriodicalId\":45994,\"journal\":{\"name\":\"International Journal of Computational Intelligence and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026823500190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于微阵列基因表达数据的肿瘤分类容易陷入过拟合,因为这些数据是由许多不相关的、冗余的和有噪声的基因组成的。传统的基因选择方法无法获得满意的分类结果。在本研究中,我们提出了一种新的多目标杂交基因选择方法RMOGA (ReliefF Multi-Objective Genetic Algorithm),旨在选择少量基因并获得良好的肿瘤识别精度。RMOGA包括两个阶段。首先,使用ReliefF从原始数据集中选择前5%的基因子集。其次,采用多目标遗传算法从ReliefF方法得到的基因子集中搜索最优基因子集;为了验证RMOGA的有效性,我们在11个可用的微阵列数据集上进行了大量实验,并将所提出的方法与其他方法进行了比较。使用朴素贝叶斯和支持向量机两种经典分类器来衡量所有比较方法的分类性能。实验结果表明,RMOGA算法在分类精度和选择基因数量上都明显优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Multi-objective Hybrid Gene Selection Algorithm for Tumor Classification Based on Microarray Gene Expression Data
Tumor classification based on microarray gene expression data is easy to fall into overfitting because such data are composed of many irrelevant, redundant, and noisy genes. Traditional gene selection methods cannot achieve satisfactory classification results. In this study, we propose a novel multi-target hybrid gene selection method named RMOGA (ReliefF Multi-Objective Genetic Algorithm), which aims to select a few genes and obtain good tumor recognition accuracy. RMOGA consists of two phases. Firstly, ReliefF is used to select the top 5% subset of genes from the original datasets. Secondly, a multi-objective genetic algorithm searches for the optimal gene subset from the gene subset obtained by the ReliefF method. To verify the validity of RMOGA, we conducted extensive experiments on 11 available microarray datasets and compared the proposed method with other previous methods. Two classical classifiers including Naive Bayes and Support Vector Machine were used to measure the classification performance of all comparison methods. Experimental results show that the RMOGA algorithm can yield significantly better results than previous state-of-the-art methods in terms of classification accuracy and the number of selected genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
25
期刊介绍: The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.
期刊最新文献
Software Effort Estimation Based on Ensemble Extreme Gradient Boosting Algorithm and Modified Jaya Optimization Algorithm Soybean Leaf Diseases Recognition Based on Generative Adversarial Network and Transfer Learning A Study of Digital Museum Collection Recommendation Algorithm Based on Improved Fuzzy Clustering Algorithm Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach Research on Fault Detection for Microservices Based on Log Information and Social Network Mechanism Using BiLSTM-DCNN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1