炼油厂脱碳策略的多目标优化方法

IF 5.4 Q2 ENERGY & FUELS Smart Energy Pub Date : 2022-05-01 DOI:10.1016/j.segy.2022.100076
Jacopo de Maigret , Diego Viesi , Md Shahriar Mahbub , Matteo Testi , Michele Cuonzo , Jakob Zinck Thellufsen , Poul Alberg Østergaard , Henrik Lund , Marco Baratieri , Luigi Crema
{"title":"炼油厂脱碳策略的多目标优化方法","authors":"Jacopo de Maigret ,&nbsp;Diego Viesi ,&nbsp;Md Shahriar Mahbub ,&nbsp;Matteo Testi ,&nbsp;Michele Cuonzo ,&nbsp;Jakob Zinck Thellufsen ,&nbsp;Poul Alberg Østergaard ,&nbsp;Henrik Lund ,&nbsp;Marco Baratieri ,&nbsp;Luigi Crema","doi":"10.1016/j.segy.2022.100076","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry, making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA), considering the minimization of annual cost and CO<sub>2</sub> emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025, EnergyPLAN + MOEA has allowed to model a range of 0–100% decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical, thermal, hydrogen feedstock and transport demand. A set of nine scenarios, with different land use availabilities and implementable technologies, each consisting of 100 optimal systems out of 10,000 simulated ones, has been evaluated. The results show, on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones, on the other, how the decarbonization pathways strongly depend on the available land for solar thermal, photovoltaic and wind, as well as the presence of a biomass supply chain in the region.</p></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"6 ","pages":"Article 100076"},"PeriodicalIF":5.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666955222000144/pdfft?md5=1f144c44f9052cdc0763c96d9726a61b&pid=1-s2.0-S2666955222000144-main.pdf","citationCount":"8","resultStr":"{\"title\":\"A multi-objective optimization approach in defining the decarbonization strategy of a refinery\",\"authors\":\"Jacopo de Maigret ,&nbsp;Diego Viesi ,&nbsp;Md Shahriar Mahbub ,&nbsp;Matteo Testi ,&nbsp;Michele Cuonzo ,&nbsp;Jakob Zinck Thellufsen ,&nbsp;Poul Alberg Østergaard ,&nbsp;Henrik Lund ,&nbsp;Marco Baratieri ,&nbsp;Luigi Crema\",\"doi\":\"10.1016/j.segy.2022.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry, making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA), considering the minimization of annual cost and CO<sub>2</sub> emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025, EnergyPLAN + MOEA has allowed to model a range of 0–100% decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical, thermal, hydrogen feedstock and transport demand. A set of nine scenarios, with different land use availabilities and implementable technologies, each consisting of 100 optimal systems out of 10,000 simulated ones, has been evaluated. The results show, on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones, on the other, how the decarbonization pathways strongly depend on the available land for solar thermal, photovoltaic and wind, as well as the presence of a biomass supply chain in the region.</p></div>\",\"PeriodicalId\":34738,\"journal\":{\"name\":\"Smart Energy\",\"volume\":\"6 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666955222000144/pdfft?md5=1f144c44f9052cdc0763c96d9726a61b&pid=1-s2.0-S2666955222000144-main.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666955222000144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955222000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

摘要

目前,全球近四分之一的二氧化碳排放量来自工业能源消耗,这是减排的重要目标。因此,本研究的范围是以意大利炼油厂为案例研究,为能源和碳密集型工业定义成本优化的脱碳战略。该方法涉及EnergyPLAN与多目标进化算法(MOEA)的耦合,将年成本和二氧化碳排放最小化作为两个潜在冲突的目标,并将能源技术的能力作为决策变量。为了实现2025年的目标,EnergyPLAN + MOEA已经建立了一系列0-100%脱碳解决方案的模型,其特点是在电力、热能、氢原料和运输需求中采用22种技术的最佳渗透组合。我们对9个场景进行了评估,这些场景具有不同的土地利用可用性和可实施技术,每个场景由10,000个模拟系统中的100个最优系统组成。结果表明,一方面,以接近当前成本实现中高脱碳解决方案的可能性,另一方面,脱碳途径在很大程度上取决于太阳能热、光伏和风能的可用土地,以及该地区生物质供应链的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-objective optimization approach in defining the decarbonization strategy of a refinery

Nowadays, nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry, making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA), considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025, EnergyPLAN + MOEA has allowed to model a range of 0–100% decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical, thermal, hydrogen feedstock and transport demand. A set of nine scenarios, with different land use availabilities and implementable technologies, each consisting of 100 optimal systems out of 10,000 simulated ones, has been evaluated. The results show, on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones, on the other, how the decarbonization pathways strongly depend on the available land for solar thermal, photovoltaic and wind, as well as the presence of a biomass supply chain in the region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
期刊最新文献
Optimization of baseload electricity and hydrogen services by renewables for a nuclear-sized district in South Italy Optimizing solar energy integration in Tallinn's district heating and cooling systems Predictive building energy management with user feedback in the loop Optimal energy management in smart energy systems: A deep reinforcement learning approach and a digital twin case-study Economic viability of decentralised battery storage systems for single-family buildings up to cross-building utilisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1