颗粒几何形状和尺寸对真空辅助旋转成型泡沫细胞形态的影响

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2023-03-01 DOI:10.1177/02624893231171662
J. Werner, D. Drummer
{"title":"颗粒几何形状和尺寸对真空辅助旋转成型泡沫细胞形态的影响","authors":"J. Werner, D. Drummer","doi":"10.1177/02624893231171662","DOIUrl":null,"url":null,"abstract":"An increased awareness of sustainability among the population leads, from an industrial point of view, to efforts to act more ecologically as well as to the aim for lower production costs and an increased efficiency. With this in mind, a new process has been developed for foaming without blowing agents in rotational molding. Process related air inclusions in the polymer melt are expanded to form the cell structure by means of vacuum application. In the presented study, the influence of different particle sizes as well as the arising potential of deploying microgranules in the otherwise powder-based process is investigated with regard to the resulting foam cells. The results confirm that particle size and form greatly influence the existence and size of air inclusions in the polymer melt. It could be proven that these differences, caused by the particle characteristics, propagate during the foaming process and lead to different cell morphologies in the resultant foam. Furthermore, it is indicated that qualitative predictions of the resulting cell dimensions can be made on the basis of bulk density measurements and the analysis of the sintering behaviour of the initial particles.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of particle geometry and size on the cell morphology of vacuum assisted rotationally molded foam\",\"authors\":\"J. Werner, D. Drummer\",\"doi\":\"10.1177/02624893231171662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increased awareness of sustainability among the population leads, from an industrial point of view, to efforts to act more ecologically as well as to the aim for lower production costs and an increased efficiency. With this in mind, a new process has been developed for foaming without blowing agents in rotational molding. Process related air inclusions in the polymer melt are expanded to form the cell structure by means of vacuum application. In the presented study, the influence of different particle sizes as well as the arising potential of deploying microgranules in the otherwise powder-based process is investigated with regard to the resulting foam cells. The results confirm that particle size and form greatly influence the existence and size of air inclusions in the polymer melt. It could be proven that these differences, caused by the particle characteristics, propagate during the foaming process and lead to different cell morphologies in the resultant foam. Furthermore, it is indicated that qualitative predictions of the resulting cell dimensions can be made on the basis of bulk density measurements and the analysis of the sintering behaviour of the initial particles.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893231171662\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893231171662","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

从工业的角度来看,人们对可持续性的认识提高,导致努力采取更环保的行动,并实现降低生产成本和提高效率的目标。考虑到这一点,开发了一种在旋转成型中无发泡剂发泡的新工艺。聚合物熔体中与工艺相关的空气夹杂物通过真空应用而膨胀以形成单元结构。在本研究中,研究了不同颗粒尺寸的影响,以及在其他基于粉末的过程中部署微粒对产生的泡沫细胞的潜在影响。结果证实,颗粒的大小和形状对聚合物熔体中夹杂物的存在和大小有很大影响。可以证明,由颗粒特性引起的这些差异在发泡过程中传播,并导致所得泡沫中不同的细胞形态。此外,研究表明,可以在体积密度测量和初始颗粒烧结行为分析的基础上对所得电池尺寸进行定性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of particle geometry and size on the cell morphology of vacuum assisted rotationally molded foam
An increased awareness of sustainability among the population leads, from an industrial point of view, to efforts to act more ecologically as well as to the aim for lower production costs and an increased efficiency. With this in mind, a new process has been developed for foaming without blowing agents in rotational molding. Process related air inclusions in the polymer melt are expanded to form the cell structure by means of vacuum application. In the presented study, the influence of different particle sizes as well as the arising potential of deploying microgranules in the otherwise powder-based process is investigated with regard to the resulting foam cells. The results confirm that particle size and form greatly influence the existence and size of air inclusions in the polymer melt. It could be proven that these differences, caused by the particle characteristics, propagate during the foaming process and lead to different cell morphologies in the resultant foam. Furthermore, it is indicated that qualitative predictions of the resulting cell dimensions can be made on the basis of bulk density measurements and the analysis of the sintering behaviour of the initial particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1