机载激光雷达地面点分类的改进渐进形态学方法

Pub Date : 2019-04-01 DOI:10.11113/IJBES.V6.N1-2.380
M. R. M. Salleh, M. Z. Rahman, Z. Ismail, M. F. A. Khanan, M. Asmadi
{"title":"机载激光雷达地面点分类的改进渐进形态学方法","authors":"M. R. M. Salleh, M. Z. Rahman, Z. Ismail, M. F. A. Khanan, M. Asmadi","doi":"10.11113/IJBES.V6.N1-2.380","DOIUrl":null,"url":null,"abstract":"Airborne Light Detection and Ranging (LiDAR) has been very effectively used in collecting terrain information over different scales of area. Inevitably, filtering the non-ground returns is the major step of digital terrain model (DTM) generation and this step poses the greatest challenge especially for tropical forest environment which consists of steep undulating terrain and mostly covered by a relatively thick canopy density. The aim of this research is to assess the performance of the Progressive Morphological (PM) algorithm after the implementation of local slope value in the ground filtering process. The improvement on the PM filtering method was done by employing local slope values obtained either using initial filtering of airborne LiDAR data or ground survey data. The filtering process has been performed with recursive mode and it stops after the results of the filtering does not show any improvement and the DTM error larger than the previous iteration. The revised PM filtering method has decreasing pattern of DTM error with increasing filtering iterations with minimum ±0.520 m of RMSE value. The results also suggest that spatially distributed slope value applied in PM filtering algorithm either from LiDAR ground points or ground survey data is capable in preserving discontinuities of terrain and correctly remove non-terrain points especially in steep area.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"REVISED PROGRESSIVE MORPHOLOGICAL METHOD FOR GROUND POINT CLASSIFICATION OF AIRBORNE LIDAR DATA\",\"authors\":\"M. R. M. Salleh, M. Z. Rahman, Z. Ismail, M. F. A. Khanan, M. Asmadi\",\"doi\":\"10.11113/IJBES.V6.N1-2.380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airborne Light Detection and Ranging (LiDAR) has been very effectively used in collecting terrain information over different scales of area. Inevitably, filtering the non-ground returns is the major step of digital terrain model (DTM) generation and this step poses the greatest challenge especially for tropical forest environment which consists of steep undulating terrain and mostly covered by a relatively thick canopy density. The aim of this research is to assess the performance of the Progressive Morphological (PM) algorithm after the implementation of local slope value in the ground filtering process. The improvement on the PM filtering method was done by employing local slope values obtained either using initial filtering of airborne LiDAR data or ground survey data. The filtering process has been performed with recursive mode and it stops after the results of the filtering does not show any improvement and the DTM error larger than the previous iteration. The revised PM filtering method has decreasing pattern of DTM error with increasing filtering iterations with minimum ±0.520 m of RMSE value. The results also suggest that spatially distributed slope value applied in PM filtering algorithm either from LiDAR ground points or ground survey data is capable in preserving discontinuities of terrain and correctly remove non-terrain points especially in steep area.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/IJBES.V6.N1-2.380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/IJBES.V6.N1-2.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机载光探测和测距(LiDAR)已被非常有效地用于收集不同区域尺度的地形信息。不可避免的是,过滤非地面回波是数字地形模型(DTM)生成的主要步骤,这一步骤带来了最大的挑战,尤其是对于热带森林环境,该环境由陡峭起伏的地形组成,大部分被相对较厚的林冠密度覆盖。本研究的目的是评估渐进形态学(PM)算法在地面滤波过程中实现局部斜率值后的性能。PM滤波方法的改进是通过使用使用机载激光雷达数据或地面测量数据的初始滤波获得的局部斜率值来完成的。滤波过程是用递归模式执行的,并且在滤波结果没有显示出任何改进并且DTM误差大于上一次迭代之后,滤波过程停止。修正后的PM滤波方法具有随着滤波迭代次数的增加而减小的DTM误差模式,最小RMSE值为±0.520m。研究结果还表明,无论是从激光雷达地面点还是地面测量数据,空间分布的斜率值应用于PM滤波算法中,都能够保留地形的不连续性,并正确地去除非地形点,尤其是在陡峭地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
REVISED PROGRESSIVE MORPHOLOGICAL METHOD FOR GROUND POINT CLASSIFICATION OF AIRBORNE LIDAR DATA
Airborne Light Detection and Ranging (LiDAR) has been very effectively used in collecting terrain information over different scales of area. Inevitably, filtering the non-ground returns is the major step of digital terrain model (DTM) generation and this step poses the greatest challenge especially for tropical forest environment which consists of steep undulating terrain and mostly covered by a relatively thick canopy density. The aim of this research is to assess the performance of the Progressive Morphological (PM) algorithm after the implementation of local slope value in the ground filtering process. The improvement on the PM filtering method was done by employing local slope values obtained either using initial filtering of airborne LiDAR data or ground survey data. The filtering process has been performed with recursive mode and it stops after the results of the filtering does not show any improvement and the DTM error larger than the previous iteration. The revised PM filtering method has decreasing pattern of DTM error with increasing filtering iterations with minimum ±0.520 m of RMSE value. The results also suggest that spatially distributed slope value applied in PM filtering algorithm either from LiDAR ground points or ground survey data is capable in preserving discontinuities of terrain and correctly remove non-terrain points especially in steep area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1