{"title":"地震作用下土坝性能的参数研究","authors":"H. Ayeche, Z. Zitouni, A. Limam, Ali Bouafia","doi":"10.2478/sgem-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Static stability of an earth dam can be established by estimating the static safety factor equal to the ratio of the shear strength to the shear stress along a critical sliding area. In contrast, it is more complicated to evaluate the dynamic stability during an earthquake. The water filling the interstices of the earth dams cannot drain during the short duration of an earthquake. An excess pore water pressure ΔU develops, and its role is predominant in the destabilisation of the dam. The pore water increase causes a decrease in the soil shear strength. It is, therefore, crucial to evaluate and take into consideration ΔU in the dam dynamic stability analysis. This research is a contribution to reach this objective. A parametric study was conducted by varying the physical and mechanical soil characteristics constituting the dam, as well as its geometrical values, in order to evaluate their effects on the dynamic safety factor. The dynamic safety factor is calculated using the pseudo-static method, taking into account the excess pore water pressure that develops during cyclic loading into the granular soil of the earth dam upstream face. The results of the parametrical analytical study were also compared to the results of numerical simulations of the dam seismic stability trough pseudo-static method. The numerical simulations were done with three different software: PLAXIS and ABAQUS (based on the finite element method) and GEOSTAB (deals with the problem at the limit equilibrium using the simplified Bishop method). At the end, on one hand, we were able to describe how and at what level of the dam upstream face the sliding occurs, and on the other hand, we were able to underline the adequate combination between the dam geometric parameters and the mechanical soil characteristics which may ensure seismic stability.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"267 - 281"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric study of the earth dam's behaviour subjected to earthquake\",\"authors\":\"H. Ayeche, Z. Zitouni, A. Limam, Ali Bouafia\",\"doi\":\"10.2478/sgem-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Static stability of an earth dam can be established by estimating the static safety factor equal to the ratio of the shear strength to the shear stress along a critical sliding area. In contrast, it is more complicated to evaluate the dynamic stability during an earthquake. The water filling the interstices of the earth dams cannot drain during the short duration of an earthquake. An excess pore water pressure ΔU develops, and its role is predominant in the destabilisation of the dam. The pore water increase causes a decrease in the soil shear strength. It is, therefore, crucial to evaluate and take into consideration ΔU in the dam dynamic stability analysis. This research is a contribution to reach this objective. A parametric study was conducted by varying the physical and mechanical soil characteristics constituting the dam, as well as its geometrical values, in order to evaluate their effects on the dynamic safety factor. The dynamic safety factor is calculated using the pseudo-static method, taking into account the excess pore water pressure that develops during cyclic loading into the granular soil of the earth dam upstream face. The results of the parametrical analytical study were also compared to the results of numerical simulations of the dam seismic stability trough pseudo-static method. The numerical simulations were done with three different software: PLAXIS and ABAQUS (based on the finite element method) and GEOSTAB (deals with the problem at the limit equilibrium using the simplified Bishop method). At the end, on one hand, we were able to describe how and at what level of the dam upstream face the sliding occurs, and on the other hand, we were able to underline the adequate combination between the dam geometric parameters and the mechanical soil characteristics which may ensure seismic stability.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"44 1\",\"pages\":\"267 - 281\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Parametric study of the earth dam's behaviour subjected to earthquake
Abstract Static stability of an earth dam can be established by estimating the static safety factor equal to the ratio of the shear strength to the shear stress along a critical sliding area. In contrast, it is more complicated to evaluate the dynamic stability during an earthquake. The water filling the interstices of the earth dams cannot drain during the short duration of an earthquake. An excess pore water pressure ΔU develops, and its role is predominant in the destabilisation of the dam. The pore water increase causes a decrease in the soil shear strength. It is, therefore, crucial to evaluate and take into consideration ΔU in the dam dynamic stability analysis. This research is a contribution to reach this objective. A parametric study was conducted by varying the physical and mechanical soil characteristics constituting the dam, as well as its geometrical values, in order to evaluate their effects on the dynamic safety factor. The dynamic safety factor is calculated using the pseudo-static method, taking into account the excess pore water pressure that develops during cyclic loading into the granular soil of the earth dam upstream face. The results of the parametrical analytical study were also compared to the results of numerical simulations of the dam seismic stability trough pseudo-static method. The numerical simulations were done with three different software: PLAXIS and ABAQUS (based on the finite element method) and GEOSTAB (deals with the problem at the limit equilibrium using the simplified Bishop method). At the end, on one hand, we were able to describe how and at what level of the dam upstream face the sliding occurs, and on the other hand, we were able to underline the adequate combination between the dam geometric parameters and the mechanical soil characteristics which may ensure seismic stability.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories