{"title":"一种具有较好负载平衡性的高效多deme遗传算法","authors":"Wang Jie, Yuan Jiangjun","doi":"10.1504/IJCSM.2018.10014228","DOIUrl":null,"url":null,"abstract":"Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"9 1","pages":"240-246"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A high-efficient multi-deme genetic algorithm with better load-balance\",\"authors\":\"Wang Jie, Yuan Jiangjun\",\"doi\":\"10.1504/IJCSM.2018.10014228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.\",\"PeriodicalId\":45487,\"journal\":{\"name\":\"International Journal of Computing Science and Mathematics\",\"volume\":\"9 1\",\"pages\":\"240-246\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.10014228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10014228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A high-efficient multi-deme genetic algorithm with better load-balance
Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.