利用自然语言处理技术识别社交媒体内容用户意见中的生殖行为争论

Q2 Social Sciences Naselenie i ekonomika Pub Date : 2023-06-30 DOI:10.3897/popecon.7.e97064
I. Kalabikhina, E. Zubova, N. Loukachevitch, Anthony Kolotusha, Zarina Kazbekova, E. Banin, G. Klimenko
{"title":"利用自然语言处理技术识别社交媒体内容用户意见中的生殖行为争论","authors":"I. Kalabikhina, E. Zubova, N. Loukachevitch, Anthony Kolotusha, Zarina Kazbekova, E. Banin, G. Klimenko","doi":"10.3897/popecon.7.e97064","DOIUrl":null,"url":null,"abstract":"Big data provides researchers with valuable sources of information for studying demographic behavior in the population. One such source is the texts posted by social network users on various demographic issues. This study utilizes methods for automatically extracting user opinions from the “VKontakte” social network. The extracted texts are then classified using the Conversational RuBERT neural network model to investigate opinions related to reproductive behavior in the population. The classification process addresses two consecutive problems. Firstly, it aims to identify whether a user’s comment contains argumentation. Secondly, if an argument is present, it seeks to determine its type within the context of the “personal-public” dichotomy. To search for arguments and classify their types, six experiments were conducted, varying the dataset and the number of classes. The method employed for automatic extraction and classification of user opinions on the “VKontakte” social network has demonstrated the ability to accurately classify users’ comments, identifying the presence of argumentation and categorizing the arguments within the “personal-public” dichotomy. This enables the identification of personal and social attitudes, values, stories, and opinions, thus facilitating the study of reproductive behavior.","PeriodicalId":33779,"journal":{"name":"Naselenie i ekonomika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Reproductive Behavior Arguments in Social Media Content Users’ Opinions through Natural Language Processing Techniques\",\"authors\":\"I. Kalabikhina, E. Zubova, N. Loukachevitch, Anthony Kolotusha, Zarina Kazbekova, E. Banin, G. Klimenko\",\"doi\":\"10.3897/popecon.7.e97064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data provides researchers with valuable sources of information for studying demographic behavior in the population. One such source is the texts posted by social network users on various demographic issues. This study utilizes methods for automatically extracting user opinions from the “VKontakte” social network. The extracted texts are then classified using the Conversational RuBERT neural network model to investigate opinions related to reproductive behavior in the population. The classification process addresses two consecutive problems. Firstly, it aims to identify whether a user’s comment contains argumentation. Secondly, if an argument is present, it seeks to determine its type within the context of the “personal-public” dichotomy. To search for arguments and classify their types, six experiments were conducted, varying the dataset and the number of classes. The method employed for automatic extraction and classification of user opinions on the “VKontakte” social network has demonstrated the ability to accurately classify users’ comments, identifying the presence of argumentation and categorizing the arguments within the “personal-public” dichotomy. This enables the identification of personal and social attitudes, values, stories, and opinions, thus facilitating the study of reproductive behavior.\",\"PeriodicalId\":33779,\"journal\":{\"name\":\"Naselenie i ekonomika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naselenie i ekonomika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/popecon.7.e97064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naselenie i ekonomika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/popecon.7.e97064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大数据为研究人员提供了研究人口统计学行为的宝贵信息来源。其中一个来源是社交网络用户发布的关于各种人口问题的文本。这项研究利用了从“VKontakte”社交网络中自动提取用户意见的方法。然后,使用对话RuBERT神经网络模型对提取的文本进行分类,以调查与人群生殖行为相关的意见。分类过程解决了两个连续的问题。首先,它旨在识别用户的评论是否包含论证。其次,如果存在一个论点,它试图在“个人-公众”二分法的背景下确定其类型。为了搜索论点并对其类型进行分类,进行了六个实验,改变了数据集和类的数量。在“VKontakte”社交网络上自动提取和分类用户意见的方法已经证明了准确分类用户评论的能力,识别论证的存在,并在“个人-公众”二分法中对论证进行分类。这使得能够识别个人和社会的态度、价值观、故事和观点,从而促进生殖行为的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Reproductive Behavior Arguments in Social Media Content Users’ Opinions through Natural Language Processing Techniques
Big data provides researchers with valuable sources of information for studying demographic behavior in the population. One such source is the texts posted by social network users on various demographic issues. This study utilizes methods for automatically extracting user opinions from the “VKontakte” social network. The extracted texts are then classified using the Conversational RuBERT neural network model to investigate opinions related to reproductive behavior in the population. The classification process addresses two consecutive problems. Firstly, it aims to identify whether a user’s comment contains argumentation. Secondly, if an argument is present, it seeks to determine its type within the context of the “personal-public” dichotomy. To search for arguments and classify their types, six experiments were conducted, varying the dataset and the number of classes. The method employed for automatic extraction and classification of user opinions on the “VKontakte” social network has demonstrated the ability to accurately classify users’ comments, identifying the presence of argumentation and categorizing the arguments within the “personal-public” dichotomy. This enables the identification of personal and social attitudes, values, stories, and opinions, thus facilitating the study of reproductive behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Naselenie i ekonomika
Naselenie i ekonomika Social Sciences-Gender Studies
CiteScore
2.10
自引率
0.00%
发文量
19
审稿时长
12 weeks
期刊最新文献
Geoinformation analysis russian health system: modeling, visualization, analysis Sustainable development, ESG and the “price” of health Household time allocation in Russia: economic or sociocultural model? Cultural Changes in Russia during the Coronavirus Crisis Involved fatherhood in Russia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1