一种检测宫颈异常的人工智能方法

Evangelos Salamalekis, A. Pouliakis, N. Margari, C. Kottaridi, A. Spathis, Effrosyni Karakitsou, Alina-Roxani Gouloumi, D. Leventakou, G. Chrelias, G. Valasoulis, M. Nasioutziki, M. Kyrgiou, K. Dinas, I. Panayiotides, E. Paraskevaidis, C. Chrelias
{"title":"一种检测宫颈异常的人工智能方法","authors":"Evangelos Salamalekis, A. Pouliakis, N. Margari, C. Kottaridi, A. Spathis, Effrosyni Karakitsou, Alina-Roxani Gouloumi, D. Leventakou, G. Chrelias, G. Valasoulis, M. Nasioutziki, M. Kyrgiou, K. Dinas, I. Panayiotides, E. Paraskevaidis, C. Chrelias","doi":"10.4018/IJRQEH.2019040102","DOIUrl":null,"url":null,"abstract":"Numerous ancillary techniques detecting HPV DNA or mRNA are viewed as competitors or ancillary techniques to test Papanicolaou. However, no technique is perfect because sensitivity increases at the cost of specificity. Various methods have been applied to resolve this issue by using many examination results, such as classification and regression trees and supervised artificial neural networks. In this article, 1258 cases with results from test Pap, HPV DNA, HPV mRNA, and p16 were used to evaluate the performance of the self-organizing map (SOM). An artificial neural network has three advantages: it is unsupervised, can tolerate missing data, and produces topographical maps. The results of the SOM application were encouraging and produced maps depicting the important tests.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJRQEH.2019040102","citationCount":"6","resultStr":"{\"title\":\"An Artificial Intelligence Approach for the Detection of Cervical Abnormalities\",\"authors\":\"Evangelos Salamalekis, A. Pouliakis, N. Margari, C. Kottaridi, A. Spathis, Effrosyni Karakitsou, Alina-Roxani Gouloumi, D. Leventakou, G. Chrelias, G. Valasoulis, M. Nasioutziki, M. Kyrgiou, K. Dinas, I. Panayiotides, E. Paraskevaidis, C. Chrelias\",\"doi\":\"10.4018/IJRQEH.2019040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous ancillary techniques detecting HPV DNA or mRNA are viewed as competitors or ancillary techniques to test Papanicolaou. However, no technique is perfect because sensitivity increases at the cost of specificity. Various methods have been applied to resolve this issue by using many examination results, such as classification and regression trees and supervised artificial neural networks. In this article, 1258 cases with results from test Pap, HPV DNA, HPV mRNA, and p16 were used to evaluate the performance of the self-organizing map (SOM). An artificial neural network has three advantages: it is unsupervised, can tolerate missing data, and produces topographical maps. The results of the SOM application were encouraging and produced maps depicting the important tests.\",\"PeriodicalId\":36298,\"journal\":{\"name\":\"International Journal of Reliable and Quality E-Healthcare\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJRQEH.2019040102\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliable and Quality E-Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRQEH.2019040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRQEH.2019040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 6

摘要

许多检测HPV DNA或mRNA的辅助技术被视为检测巴氏杆菌的竞争对手或辅助技术。然而,没有一种技术是完美的,因为灵敏度的增加是以特异性为代价的。通过使用许多检查结果,已经应用了各种方法来解决这个问题,例如分类和回归树以及监督人工神经网络。在这篇文章中,1258例病例的检测结果来自Pap、HPV DNA、HPV mRNA和p16,用于评估自组织映射(SOM)的性能。人工神经网络有三个优点:它是无监督的,可以容忍丢失的数据,并生成地形图。SOM应用程序的结果令人鼓舞,并生成了描述重要测试的地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Artificial Intelligence Approach for the Detection of Cervical Abnormalities
Numerous ancillary techniques detecting HPV DNA or mRNA are viewed as competitors or ancillary techniques to test Papanicolaou. However, no technique is perfect because sensitivity increases at the cost of specificity. Various methods have been applied to resolve this issue by using many examination results, such as classification and regression trees and supervised artificial neural networks. In this article, 1258 cases with results from test Pap, HPV DNA, HPV mRNA, and p16 were used to evaluate the performance of the self-organizing map (SOM). An artificial neural network has three advantages: it is unsupervised, can tolerate missing data, and produces topographical maps. The results of the SOM application were encouraging and produced maps depicting the important tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
期刊最新文献
Probabilistic Model of Patient Classification Using Bayesian Model A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images The Effect of E-Learning and Traditional Teaching Done Hand-in-Hand for First-Year M.B.B.S. Students Decentralized Blockchain-Enabled Employee Authentication System Hybrid Artificial Intelligence-Based Models for Prediction of Death Rate in India Due to COVID-19 Transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1