基于加权词嵌入的文本摘要增强TextRank

E. Yulianti, Nicholas Pangestu, Meganingrum Arista Jiwanggi
{"title":"基于加权词嵌入的文本摘要增强TextRank","authors":"E. Yulianti, Nicholas Pangestu, Meganingrum Arista Jiwanggi","doi":"10.11591/ijece.v13i5.pp5472-5482","DOIUrl":null,"url":null,"abstract":"The length of a news article may influence people’s interest to read the article. In this case, text summarization can help to create a shorter representative version of an article to reduce people’s read time. This paper proposes to use weighted word embedding based on Word2Vec, FastText, and bidirectional encoder representations from transformers (BERT) models to enhance the TextRank summarization algorithm. The use of weighted word embedding is aimed to create better sentence representation, in order to produce more accurate summaries. The results show that using (unweighted) word embedding significantly improves the performance of the TextRank algorithm, with the best performance gained by the summarization system using BERT word embedding. When each word embedding is weighed using term frequency-inverse document frequency (TF-IDF), the performance for all systems using unweighted word embedding further significantly improve, with the biggest improvement achieved by the systems using Word2Vec (with 6.80% to 12.92% increase) and FastText (with 7.04% to 12.78% increase). Overall, our systems using weighted word embedding can outperform the TextRank method by up to 17.33% in ROUGE-1 and 30.01% in ROUGE-2. This demonstrates the effectiveness of weighted word embedding in the TextRank algorithm for text summarization.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced TextRank using weighted word embedding for text summarization\",\"authors\":\"E. Yulianti, Nicholas Pangestu, Meganingrum Arista Jiwanggi\",\"doi\":\"10.11591/ijece.v13i5.pp5472-5482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The length of a news article may influence people’s interest to read the article. In this case, text summarization can help to create a shorter representative version of an article to reduce people’s read time. This paper proposes to use weighted word embedding based on Word2Vec, FastText, and bidirectional encoder representations from transformers (BERT) models to enhance the TextRank summarization algorithm. The use of weighted word embedding is aimed to create better sentence representation, in order to produce more accurate summaries. The results show that using (unweighted) word embedding significantly improves the performance of the TextRank algorithm, with the best performance gained by the summarization system using BERT word embedding. When each word embedding is weighed using term frequency-inverse document frequency (TF-IDF), the performance for all systems using unweighted word embedding further significantly improve, with the biggest improvement achieved by the systems using Word2Vec (with 6.80% to 12.92% increase) and FastText (with 7.04% to 12.78% increase). Overall, our systems using weighted word embedding can outperform the TextRank method by up to 17.33% in ROUGE-1 and 30.01% in ROUGE-2. This demonstrates the effectiveness of weighted word embedding in the TextRank algorithm for text summarization.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5472-5482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5472-5482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

一篇新闻文章的长度可能会影响人们阅读文章的兴趣。在这种情况下,文本摘要可以帮助创建文章的较短代表性版本,以减少人们的阅读时间。本文提出使用基于Word2Vec、FastText的加权词嵌入和来自变换器(BERT)模型的双向编码器表示来增强TextRank摘要算法。加权词嵌入的使用旨在创建更好的句子表示,以便生成更准确的摘要。结果表明,使用(未加权)词嵌入显著提高了TextRank算法的性能,其中使用BERT词嵌入的摘要系统获得了最好的性能。当使用术语频率逆文档频率(TF-IDF)对每个单词嵌入进行加权时,所有使用未加权单词嵌入的系统的性能都进一步显著提高,其中使用Word2Verc(增加6.80%至12.92%)和FastText(增加7.04%至12.78%)的系统实现了最大的改进。总体而言,我们使用加权词嵌入的系统在ROUGE-1中可以比TextRank方法高出17.33%,在ROUGE-2中可以高出30.01%。这证明了加权词嵌入在文本摘要的TextRank算法中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced TextRank using weighted word embedding for text summarization
The length of a news article may influence people’s interest to read the article. In this case, text summarization can help to create a shorter representative version of an article to reduce people’s read time. This paper proposes to use weighted word embedding based on Word2Vec, FastText, and bidirectional encoder representations from transformers (BERT) models to enhance the TextRank summarization algorithm. The use of weighted word embedding is aimed to create better sentence representation, in order to produce more accurate summaries. The results show that using (unweighted) word embedding significantly improves the performance of the TextRank algorithm, with the best performance gained by the summarization system using BERT word embedding. When each word embedding is weighed using term frequency-inverse document frequency (TF-IDF), the performance for all systems using unweighted word embedding further significantly improve, with the biggest improvement achieved by the systems using Word2Vec (with 6.80% to 12.92% increase) and FastText (with 7.04% to 12.78% increase). Overall, our systems using weighted word embedding can outperform the TextRank method by up to 17.33% in ROUGE-1 and 30.01% in ROUGE-2. This demonstrates the effectiveness of weighted word embedding in the TextRank algorithm for text summarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1