汽车操纵性能的深度学习辅助分析

D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani
{"title":"汽车操纵性能的深度学习辅助分析","authors":"D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani","doi":"10.2478/caim-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"13 1","pages":"78 - 95"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-assisted analysis of automobiles handling performances\",\"authors\":\"D. Sapienza, D. Paganelli, M. Prato, M. Bertogna, Matteo Spallanzani\",\"doi\":\"10.2478/caim-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"13 1\",\"pages\":\"78 - 95\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要豪华汽车市场要求制定产品开发标准,旨在为汽车领域提供最先进的功能。操控性能是开发新车型时必须评估的最重要特性之一。在这项工作中,我们分析了从驾驶过程的客观记录中预测汽车操纵性能的主观评价的问题。记录是描述汽车机械状态时间演变的多维时间序列。分类变量量化处理属性的评估。我们描述了一个原始的深度学习系统,该系统具有去噪自动编码器和分层注意力机制,我们设计用于解决这一任务。注意力机制本质上计算其输入分量的概率分布。将这一特征与显著性图技术相结合,我们的系统可以计算热图,为识别影响其预测的物理事件提供视觉帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-assisted analysis of automobiles handling performances
Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
期刊最新文献
Global Existence of Weak Solutions for Compresssible Navier—Stokes—Fourier Equations with the Truncated Virial Pressure Law Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles Modelling and predicting coastal zone depth profile evolution: a survey A general review on the NLS equation with point-concentrated nonlinearity Polynomial mapped bases: theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1