Shahr-e-Babak地区上第四纪高铌玄武岩的岩石学和地球化学:对Kerman新生代岩浆弧碰撞后岩浆过程的认识

IF 1.3 4区 地球科学 Q2 GEOLOGY Geologica Acta Pub Date : 2022-08-31 DOI:10.1344/geologicaacta2022.20.8
Sakine Moradi, T. Khaksar, Asma Nazarinia, Amjad Hussain
{"title":"Shahr-e-Babak地区上第四纪高铌玄武岩的岩石学和地球化学:对Kerman新生代岩浆弧碰撞后岩浆过程的认识","authors":"Sakine Moradi, T. Khaksar, Asma Nazarinia, Amjad Hussain","doi":"10.1344/geologicaacta2022.20.8","DOIUrl":null,"url":null,"abstract":"Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrology and geochemistry of Plio-Quaternary high-Nb basalts from Shahr-e-Babak area:Insights into post-collision magmatic processes in the Kerman Cenozoic Magmatic Arc\",\"authors\":\"Sakine Moradi, T. Khaksar, Asma Nazarinia, Amjad Hussain\",\"doi\":\"10.1344/geologicaacta2022.20.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone.\",\"PeriodicalId\":55107,\"journal\":{\"name\":\"Geologica Acta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1344/geologicaacta2022.20.8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1344/geologicaacta2022.20.8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碰撞后的上新世-第四纪玄武岩在Shahr-e-Babak市西北和东部的克尔曼新生代岩浆弧(KCMA)中露头。这些斑状和泡状玄武岩主要由斜辉石、橄榄石和斜长石组成。这些玄武岩显示出碱性亲和性和负Ta、Zr、Rb异常,但相对于具有相似相容性的元素,显示出轻微的负Nb异常,以及正Ba、K、Sr异常,表明其岩浆源与俯冲吸积有关,并暗示俯冲板衍生成分与岩浆源有关。在原始地幔和球粒陨石归一化图中,这些岩石显示出类似于海岛玄武岩(OIB)的微量元素(Nb、Ta贫化除外)和稀土元素(REE)模式,并具有类似于高Nb玄武岩(HNBs)的微量和主元素特征。主要元素和微量元素的地球化学分析表明,Shahr-e-Babak HNBs经历了轻微的地壳污染和少量的橄榄石+Fe-Ti氧化物±单斜辉石分级结晶。这些HNBs来源于石榴石-橄榄岩-地幔楔的部分熔融(~5%),在KCMA碰撞后环境中,石榴石-橄榄石-地幔楔已经被上覆沉积物、流体和adakitic(板状)熔体交代为主要交代剂。我们的结论是,板块断裂引起的软流圈上升流伴随着俯冲的新特提斯板块的回滚,也触发了交代橄榄岩地幔楔,并导致其在俯冲带部分熔融。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrology and geochemistry of Plio-Quaternary high-Nb basalts from Shahr-e-Babak area:Insights into post-collision magmatic processes in the Kerman Cenozoic Magmatic Arc
Post-collision Pliocene-Quaternary basaltic rocks outcrop in the Kerman Cenozoic Magmatic Arc (KCMA) to the northwest and east of Shahr-e-Babak city. These porphyritic and vesicular basaltic rocks are composed essentially of clinopyroxene, olivine, and plagioclase. These basalts display alkaline affinity and negative Ta, Zr, Rb anomaly, but slightly negative Nb anomaly, relative to elements with similar compatibility, and positive Ba, K, Sr anomaly, suggesting their magma source related to subduction-accretion with implication of subducted slab derived components to the source. In the primitive mantle and chondrite normalized diagrams, these rocks show trace elements (except depletion in Nb, Ta) and Rare Earth Element (REE) patterns similar to the Ocean Island Basalts (OIB) and share trace and major element characteristics similar to High-Nb Basalts (HNBs). Geochemical analyses for major and trace elements suggest that the Shahr-e-Babak HNBs have undergone insignificant crustal contamination and minor olivine + Fe-Ti oxide ±clinopyroxene fractional crystallization. These HNBs derived from a partial melting (~5%) of garnet-peridotite mantle wedge, which have already metasomatized by overlying sediments, fluids, and adakitic (slab-derived) melts as major metasomatic agents in post-collision setting in the KCMA. We conclude that asthenospheric upwelling arising from slab break-off followed by the roll-back of subducting Neotethys slab also triggered metasomatized peridotite mantle wedge and caused its partial melting in the subduction zone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geologica Acta
Geologica Acta 地学-地质学
CiteScore
2.50
自引率
6.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: - Relevant conceptual developments in any area of the Earth Sciences. - Studies presenting regional synthesis. - Thematic issues or monographic volumes presenting the results from one or more research groups. - Short papers reflecting interesting results or works in progress. - Contributions and results from Research Projects, Workshops, Symposiums, Congresses and any relevant scientific activity related to Earth Sciences. - Geologica Acta aims to stimulate rapid diffusion of results and efficient exchange of ideas between the widespread communities of Earth Science researchers (with special emphasis on Latinamerica, the Caribbean, Europe, the Mediterranean
期刊最新文献
Study of the rupture processes of the 1989 (Mw 6.9) and 2021 (Mw 7.0) Guerrero earthquakes using teleseismic records: Sismotectonic implications Understanding the spatio-temporal evolution of fractures in pillow basalt Devonian-Mississippian faulting controlled by WNW-ESE-striking structural grain in Proterozoic basement rocks in Billefjorden, central Spitsbergen Origin and evolution of Neoproterozoic metaophiolitic mantle rocks from the eastern Desert of Egypt: Implications for tectonic and metamorphic events in the Arabian-Nubian Shield Tectonic and lithologic controls on the landscape adjustment along the eastern terrain of the Mae Tha fault, northern Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1