再现骆驼VHH结构特征的人源化人工VHH文库的构建

IF 3 Q3 IMMUNOLOGY Antibodies Pub Date : 2022-01-30 DOI:10.3390/antib11010010
Taihei Murakami, Shigefumi Kumachi, Y. Matsunaga, Miwa Sato, Kanako Wakabayashi-Nakao, Hidekazu Masaki, R. Yonehara, Maiko Motohashi, N. Nemoto, Masayuki Tsuchiya
{"title":"再现骆驼VHH结构特征的人源化人工VHH文库的构建","authors":"Taihei Murakami, Shigefumi Kumachi, Y. Matsunaga, Miwa Sato, Kanako Wakabayashi-Nakao, Hidekazu Masaki, R. Yonehara, Maiko Motohashi, N. Nemoto, Masayuki Tsuchiya","doi":"10.3390/antib11010010","DOIUrl":null,"url":null,"abstract":"A variable domain of heavy chain antibody (VHH) has different binding properties than conventional antibodies. Conventional antibodies prefer binding to the convex portion of the antigen, whereas VHHs prefer epitopes, such as crevices and clefts on the antigen. Therefore, developing candidates with the binding characteristics of camelid VHHs is important. Thus, To this end, a synthetic VHH library that reproduces the structural properties of camelid VHHs was constructed. First, the characteristics of VHHs were classified according to the paratope formation based on crystal structure analyses of the complex structures of VHHs and antigens. Then, we classified 330 complementarity-determining region 3 (CDR3) structures of VHHs from the Protein Data Bank (PDB) into three loop structures: Upright, Half-Roll, and Roll. Moreover, these structures depended on the number of amino acid residues within CDR3. Furthermore, in the Upright loops, several amino acid residues in the FR2 are involved in the paratope formation, along with CDR3, suggesting that the FR2 design in the synthetic library is important. A humanized synthetic VHH library, comprising two sub-libraries, Upright and Roll, was constructed and named PharmaLogical. A validation study confirmed that our PharmaLogical library reproduces VHHs with the characteristics of the paratope formation of the camelid VHHs, and shows good performance in VHH screening.","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Construction of a Humanized Artificial VHH Library Reproducing Structural Features of Camelid VHHs for Therapeutics\",\"authors\":\"Taihei Murakami, Shigefumi Kumachi, Y. Matsunaga, Miwa Sato, Kanako Wakabayashi-Nakao, Hidekazu Masaki, R. Yonehara, Maiko Motohashi, N. Nemoto, Masayuki Tsuchiya\",\"doi\":\"10.3390/antib11010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variable domain of heavy chain antibody (VHH) has different binding properties than conventional antibodies. Conventional antibodies prefer binding to the convex portion of the antigen, whereas VHHs prefer epitopes, such as crevices and clefts on the antigen. Therefore, developing candidates with the binding characteristics of camelid VHHs is important. Thus, To this end, a synthetic VHH library that reproduces the structural properties of camelid VHHs was constructed. First, the characteristics of VHHs were classified according to the paratope formation based on crystal structure analyses of the complex structures of VHHs and antigens. Then, we classified 330 complementarity-determining region 3 (CDR3) structures of VHHs from the Protein Data Bank (PDB) into three loop structures: Upright, Half-Roll, and Roll. Moreover, these structures depended on the number of amino acid residues within CDR3. Furthermore, in the Upright loops, several amino acid residues in the FR2 are involved in the paratope formation, along with CDR3, suggesting that the FR2 design in the synthetic library is important. A humanized synthetic VHH library, comprising two sub-libraries, Upright and Roll, was constructed and named PharmaLogical. A validation study confirmed that our PharmaLogical library reproduces VHHs with the characteristics of the paratope formation of the camelid VHHs, and shows good performance in VHH screening.\",\"PeriodicalId\":8188,\"journal\":{\"name\":\"Antibodies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antib11010010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib11010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

重链抗体的可变结构域(VHH)具有与常规抗体不同的结合特性。常规抗体更喜欢与抗原的凸起部分结合,而VHH更喜欢表位,如抗原上的缝隙和裂口。因此,开发具有骆驼VHH结合特性的候选者是重要的。因此,为此,构建了一个复制骆驼VHH结构特性的合成VHH文库。首先,通过对VHH和抗原复杂结构的晶体结构分析,根据副表位的形成对VHH的特征进行了分类。然后,我们将来自蛋白质数据库(PDB)的330个VHH的互补决定区3(CDR3)结构分类为三个环结构:直立、半滚和滚。此外,这些结构取决于CDR3内氨基酸残基的数量。此外,在直立环中,FR2中的几个氨基酸残基与CDR3一起参与副表位的形成,这表明合成文库中的FR2设计是重要的。构建了一个人源化合成VHH文库,包括两个子文库Upright和Roll,并命名为PharmaLogical。一项验证研究证实,我们的PharmaLogical文库复制了具有骆驼VHH副表位形成特征的VHH,并在VHH筛选中表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of a Humanized Artificial VHH Library Reproducing Structural Features of Camelid VHHs for Therapeutics
A variable domain of heavy chain antibody (VHH) has different binding properties than conventional antibodies. Conventional antibodies prefer binding to the convex portion of the antigen, whereas VHHs prefer epitopes, such as crevices and clefts on the antigen. Therefore, developing candidates with the binding characteristics of camelid VHHs is important. Thus, To this end, a synthetic VHH library that reproduces the structural properties of camelid VHHs was constructed. First, the characteristics of VHHs were classified according to the paratope formation based on crystal structure analyses of the complex structures of VHHs and antigens. Then, we classified 330 complementarity-determining region 3 (CDR3) structures of VHHs from the Protein Data Bank (PDB) into three loop structures: Upright, Half-Roll, and Roll. Moreover, these structures depended on the number of amino acid residues within CDR3. Furthermore, in the Upright loops, several amino acid residues in the FR2 are involved in the paratope formation, along with CDR3, suggesting that the FR2 design in the synthetic library is important. A humanized synthetic VHH library, comprising two sub-libraries, Upright and Roll, was constructed and named PharmaLogical. A validation study confirmed that our PharmaLogical library reproduces VHHs with the characteristics of the paratope formation of the camelid VHHs, and shows good performance in VHH screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antibodies
Antibodies IMMUNOLOGY-
CiteScore
7.10
自引率
6.40%
发文量
68
审稿时长
11 weeks
期刊介绍: Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.
期刊最新文献
Oral Paraneoplastic Pemphigus: A Scoping Review on Pathogenetic Mechanisms and Histo-Serological Profile. Enhancing Tumor Immunity with IL-12 and PD-1 Blockade: A Strategy for Inducing Robust Central Memory T Cell Responses in Resistant Cancer Model. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link. Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1