Abolfazl Baghbani, Susanga Costa, B. O’Kelly, A. Soltani, M. Barzegar
{"title":"膨胀型硅砂循环单剪特性的实验研究","authors":"Abolfazl Baghbani, Susanga Costa, B. O’Kelly, A. Soltani, M. Barzegar","doi":"10.1080/19386362.2022.2135226","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study investigated the cyclic behaviour of a severe dilative silica sand from Rudsar, Northern Iran, through simple shear tests. For this purpose, monotonic (constant volume/vertical stress) and cyclic (constant vertical stress) tests were performed on moist sand specimens prepared at initial relative densities of 20–60%, vertical stresses of 100–300 kPa, and cyclic stress ratios of CSR = 0.20, 0.25 and 0.30. These also included bender element tests to determine the small-strain shear modulus G max. An increase in initial relative density, vertical stress and number of loading cycles led to a nonlinear increase in the secant shear modulus G sec, while the opposite was observed for increasing CSR. Moreover, increasing CSR improved the damping ratio, whereas increasing the initial relative density, vertical stress and/or number of loading cycles had negative effects on the damping ratio. Finally, the bender element test results showed that G max increased for increasing vertical stress and initial relative density.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":"17 1","pages":"91 - 105"},"PeriodicalIF":2.3000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Experimental study on cyclic simple shear behaviour of predominantly dilative silica sand\",\"authors\":\"Abolfazl Baghbani, Susanga Costa, B. O’Kelly, A. Soltani, M. Barzegar\",\"doi\":\"10.1080/19386362.2022.2135226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study investigated the cyclic behaviour of a severe dilative silica sand from Rudsar, Northern Iran, through simple shear tests. For this purpose, monotonic (constant volume/vertical stress) and cyclic (constant vertical stress) tests were performed on moist sand specimens prepared at initial relative densities of 20–60%, vertical stresses of 100–300 kPa, and cyclic stress ratios of CSR = 0.20, 0.25 and 0.30. These also included bender element tests to determine the small-strain shear modulus G max. An increase in initial relative density, vertical stress and number of loading cycles led to a nonlinear increase in the secant shear modulus G sec, while the opposite was observed for increasing CSR. Moreover, increasing CSR improved the damping ratio, whereas increasing the initial relative density, vertical stress and/or number of loading cycles had negative effects on the damping ratio. Finally, the bender element test results showed that G max increased for increasing vertical stress and initial relative density.\",\"PeriodicalId\":47238,\"journal\":{\"name\":\"International Journal of Geotechnical Engineering\",\"volume\":\"17 1\",\"pages\":\"91 - 105\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19386362.2022.2135226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19386362.2022.2135226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on cyclic simple shear behaviour of predominantly dilative silica sand
ABSTRACT This study investigated the cyclic behaviour of a severe dilative silica sand from Rudsar, Northern Iran, through simple shear tests. For this purpose, monotonic (constant volume/vertical stress) and cyclic (constant vertical stress) tests were performed on moist sand specimens prepared at initial relative densities of 20–60%, vertical stresses of 100–300 kPa, and cyclic stress ratios of CSR = 0.20, 0.25 and 0.30. These also included bender element tests to determine the small-strain shear modulus G max. An increase in initial relative density, vertical stress and number of loading cycles led to a nonlinear increase in the secant shear modulus G sec, while the opposite was observed for increasing CSR. Moreover, increasing CSR improved the damping ratio, whereas increasing the initial relative density, vertical stress and/or number of loading cycles had negative effects on the damping ratio. Finally, the bender element test results showed that G max increased for increasing vertical stress and initial relative density.