Z. Li, Qingkai Miao, Shehzad Ashraf Chaudhry, Chien-Ming Chen
{"title":"在支持雾的社交车联网中,一种可证明安全且轻量级的相互认证协议","authors":"Z. Li, Qingkai Miao, Shehzad Ashraf Chaudhry, Chien-Ming Chen","doi":"10.1177/15501329221104332","DOIUrl":null,"url":null,"abstract":"The Internet of vehicles technology has developed rapidly in recent years and has become increasingly important. The social Internet of vehicles provides better resources and services for the development of the Internet of vehicles and provides better experience for users. However, there are still many security problems in social vehicle networking environments. Once the vehicle is networked, the biggest problem is data security according to the three levels of data collection, intelligent analysis, and decision control of the Internet of vehicles. Recently, Wu et al. proposed a lightweight vehicle social network security authentication protocol based on fog nodes. They claimed that their security authentication protocol could resist various attacks. However, we found that their authentication protocols are vulnerable to internal attacks, smart card theft attacks, and lack perfect forward security. In this study, we propose a new protocol to overcome these limitations. Finally, security and performance analyses show that our protocol perfectly overcomes these limitations and exhibits excellent performance and efficiency.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A provably secure and lightweight mutual authentication protocol in fog-enabled social Internet of vehicles\",\"authors\":\"Z. Li, Qingkai Miao, Shehzad Ashraf Chaudhry, Chien-Ming Chen\",\"doi\":\"10.1177/15501329221104332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of vehicles technology has developed rapidly in recent years and has become increasingly important. The social Internet of vehicles provides better resources and services for the development of the Internet of vehicles and provides better experience for users. However, there are still many security problems in social vehicle networking environments. Once the vehicle is networked, the biggest problem is data security according to the three levels of data collection, intelligent analysis, and decision control of the Internet of vehicles. Recently, Wu et al. proposed a lightweight vehicle social network security authentication protocol based on fog nodes. They claimed that their security authentication protocol could resist various attacks. However, we found that their authentication protocols are vulnerable to internal attacks, smart card theft attacks, and lack perfect forward security. In this study, we propose a new protocol to overcome these limitations. Finally, security and performance analyses show that our protocol perfectly overcomes these limitations and exhibits excellent performance and efficiency.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221104332\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221104332","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A provably secure and lightweight mutual authentication protocol in fog-enabled social Internet of vehicles
The Internet of vehicles technology has developed rapidly in recent years and has become increasingly important. The social Internet of vehicles provides better resources and services for the development of the Internet of vehicles and provides better experience for users. However, there are still many security problems in social vehicle networking environments. Once the vehicle is networked, the biggest problem is data security according to the three levels of data collection, intelligent analysis, and decision control of the Internet of vehicles. Recently, Wu et al. proposed a lightweight vehicle social network security authentication protocol based on fog nodes. They claimed that their security authentication protocol could resist various attacks. However, we found that their authentication protocols are vulnerable to internal attacks, smart card theft attacks, and lack perfect forward security. In this study, we propose a new protocol to overcome these limitations. Finally, security and performance analyses show that our protocol perfectly overcomes these limitations and exhibits excellent performance and efficiency.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.