{"title":"静水载荷作用下油轮舱壁的拓扑优化","authors":"S. Paul","doi":"10.3329/jname.v18i2.52224","DOIUrl":null,"url":null,"abstract":"In the field of Naval Architecture, the conventional approach to design any vessel is to follow the classification societies’ rules to ensure adequate strength and structural integrity. Nowadays, owners’ demands and purposes of vessels are changing dramatically. To mitigate these demands, sometimes it is necessary to design new types of structures, but the classification society’s rules are not sufficient to prepare these advanced designs. Moreover, Naval Architects are always eager to minimize the lightweight of a vessel as this is directly related to cost and carrying capacity. Topology optimization has become a powerful tool for designing structures in an optimized way. The concept of topology optimization has been utilized by the automotive and aerospace industry for almost thirty years where problems associated with solutions meant to satisfy maximum stiffness and structural integrity with minimum weight which are of utmost importance. However, in the field of marine and offshore structures, the use of topology optimization is infrequent. As structural optimization aims to design structures under certain constraints to achieve better strength and lower cost, the introduction of this technique in ship structure can be lucrative. In this paper, a methodology to apply structural topology optimization in the field of ship design is presented. An Oil Tanker Bulkhead has been selected for this study. SIMULIA ABAQUS software is used in this regard. Topology optimization has been performed by minimizing the strain energy of the component as the objective function and a target stiffness and material volume of the structure as design constraints. Finally, the results demonstrate the general applicability of the methodology presented for obtaining the geometrical layout of the structure.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of an oil tanker bulkhead subjected to hydrostatic loads\",\"authors\":\"S. Paul\",\"doi\":\"10.3329/jname.v18i2.52224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of Naval Architecture, the conventional approach to design any vessel is to follow the classification societies’ rules to ensure adequate strength and structural integrity. Nowadays, owners’ demands and purposes of vessels are changing dramatically. To mitigate these demands, sometimes it is necessary to design new types of structures, but the classification society’s rules are not sufficient to prepare these advanced designs. Moreover, Naval Architects are always eager to minimize the lightweight of a vessel as this is directly related to cost and carrying capacity. Topology optimization has become a powerful tool for designing structures in an optimized way. The concept of topology optimization has been utilized by the automotive and aerospace industry for almost thirty years where problems associated with solutions meant to satisfy maximum stiffness and structural integrity with minimum weight which are of utmost importance. However, in the field of marine and offshore structures, the use of topology optimization is infrequent. As structural optimization aims to design structures under certain constraints to achieve better strength and lower cost, the introduction of this technique in ship structure can be lucrative. In this paper, a methodology to apply structural topology optimization in the field of ship design is presented. An Oil Tanker Bulkhead has been selected for this study. SIMULIA ABAQUS software is used in this regard. Topology optimization has been performed by minimizing the strain energy of the component as the objective function and a target stiffness and material volume of the structure as design constraints. Finally, the results demonstrate the general applicability of the methodology presented for obtaining the geometrical layout of the structure.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.52224\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.52224","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Topology optimization of an oil tanker bulkhead subjected to hydrostatic loads
In the field of Naval Architecture, the conventional approach to design any vessel is to follow the classification societies’ rules to ensure adequate strength and structural integrity. Nowadays, owners’ demands and purposes of vessels are changing dramatically. To mitigate these demands, sometimes it is necessary to design new types of structures, but the classification society’s rules are not sufficient to prepare these advanced designs. Moreover, Naval Architects are always eager to minimize the lightweight of a vessel as this is directly related to cost and carrying capacity. Topology optimization has become a powerful tool for designing structures in an optimized way. The concept of topology optimization has been utilized by the automotive and aerospace industry for almost thirty years where problems associated with solutions meant to satisfy maximum stiffness and structural integrity with minimum weight which are of utmost importance. However, in the field of marine and offshore structures, the use of topology optimization is infrequent. As structural optimization aims to design structures under certain constraints to achieve better strength and lower cost, the introduction of this technique in ship structure can be lucrative. In this paper, a methodology to apply structural topology optimization in the field of ship design is presented. An Oil Tanker Bulkhead has been selected for this study. SIMULIA ABAQUS software is used in this regard. Topology optimization has been performed by minimizing the strain energy of the component as the objective function and a target stiffness and material volume of the structure as design constraints. Finally, the results demonstrate the general applicability of the methodology presented for obtaining the geometrical layout of the structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.