{"title":"基于最小模型选择准则的多元广义岭回归岭参数优化","authors":"M. Ohishi","doi":"10.32917/H2020104","DOIUrl":null,"url":null,"abstract":"A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ridge parameters optimization based on minimizing model selection criterion in multivariate generalized ridge regression\",\"authors\":\"M. Ohishi\",\"doi\":\"10.32917/H2020104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/H2020104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/H2020104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ridge parameters optimization based on minimizing model selection criterion in multivariate generalized ridge regression
A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.
期刊介绍:
Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970).
Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.