{"title":"用于减缓结构动力响应的最佳惯性放大器粘弹性基隔振器的分析研究","authors":"Sudip Chowdhury, Arnab Banerjee, S. Adhikari","doi":"10.1080/24705314.2023.2176619","DOIUrl":null,"url":null,"abstract":"ABSTRACT The inertial amplifier viscoelastic base isolators (IAVBI) are introduced in this paper. The viscoelastic materials are implanted inside the core material of the inertial amplifier base isolators. The standard linear solid (SLS) models are applied to formulate the viscoelastic material mathematically. The viscoelastic materials are also implanted inside the traditional base isolators to enhance their dynamic response reduction capacity. The optimal dynamic responses of structures controlled by novel viscoelastic base isolators are derived analytically. The exact closed-form expressions for optimal design parameters of novel viscoelastic base isolators for structures are derived using and optimization methods. The feasibility of these optimal design parameters has been tested by frequency domain analysis. The optimal dynamic response reduction capacity of inertial amplifier viscoelastic base isolators has been determined to investigate the robustness of the and optimized design parameters. The closed-form expressions for optimal design parameters of novel base isolators are mathematically correct and effective for design purposes.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":"8 1","pages":"150 - 160"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The optimum inertial amplifier viscoelastic base isolators for dynamic response mitigation of structures: an analytical study\",\"authors\":\"Sudip Chowdhury, Arnab Banerjee, S. Adhikari\",\"doi\":\"10.1080/24705314.2023.2176619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The inertial amplifier viscoelastic base isolators (IAVBI) are introduced in this paper. The viscoelastic materials are implanted inside the core material of the inertial amplifier base isolators. The standard linear solid (SLS) models are applied to formulate the viscoelastic material mathematically. The viscoelastic materials are also implanted inside the traditional base isolators to enhance their dynamic response reduction capacity. The optimal dynamic responses of structures controlled by novel viscoelastic base isolators are derived analytically. The exact closed-form expressions for optimal design parameters of novel viscoelastic base isolators for structures are derived using and optimization methods. The feasibility of these optimal design parameters has been tested by frequency domain analysis. The optimal dynamic response reduction capacity of inertial amplifier viscoelastic base isolators has been determined to investigate the robustness of the and optimized design parameters. The closed-form expressions for optimal design parameters of novel base isolators are mathematically correct and effective for design purposes.\",\"PeriodicalId\":43844,\"journal\":{\"name\":\"Journal of Structural Integrity and Maintenance\",\"volume\":\"8 1\",\"pages\":\"150 - 160\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Integrity and Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705314.2023.2176619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2023.2176619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The optimum inertial amplifier viscoelastic base isolators for dynamic response mitigation of structures: an analytical study
ABSTRACT The inertial amplifier viscoelastic base isolators (IAVBI) are introduced in this paper. The viscoelastic materials are implanted inside the core material of the inertial amplifier base isolators. The standard linear solid (SLS) models are applied to formulate the viscoelastic material mathematically. The viscoelastic materials are also implanted inside the traditional base isolators to enhance their dynamic response reduction capacity. The optimal dynamic responses of structures controlled by novel viscoelastic base isolators are derived analytically. The exact closed-form expressions for optimal design parameters of novel viscoelastic base isolators for structures are derived using and optimization methods. The feasibility of these optimal design parameters has been tested by frequency domain analysis. The optimal dynamic response reduction capacity of inertial amplifier viscoelastic base isolators has been determined to investigate the robustness of the and optimized design parameters. The closed-form expressions for optimal design parameters of novel base isolators are mathematically correct and effective for design purposes.