Joseph A. Arsecularatne, Serena Tran, Mark J. Hoffman
{"title":"温度对牙科复合材料磨损性能的影响","authors":"Joseph A. Arsecularatne, Serena Tran, Mark J. Hoffman","doi":"10.1049/bsb2.12052","DOIUrl":null,"url":null,"abstract":"<p>Despite numerous published studies on the wear of dental composites, few have considered the influence of temperature on the two-body wear process. Additionally, no previous work has considered the influence of temperature on dominant wear mechanisms during the consumption of hot substances, hence the focus of this study. Reciprocating wear tests were carried out at varying artificial saliva lubricant temperatures (37 and 57°C) and material loss was quantified using profilometry. The wear tracks were analysed using FIB/SEM/TEM. Results reveal that the wear rate of a dental composite can significantly increase with temperature, with fatigue/delamination and ploughing acting as dominant mechanisms.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"8 4","pages":"329-336"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12052","citationCount":"0","resultStr":"{\"title\":\"The effect of temperature on the wear behaviour of dental composites\",\"authors\":\"Joseph A. Arsecularatne, Serena Tran, Mark J. Hoffman\",\"doi\":\"10.1049/bsb2.12052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite numerous published studies on the wear of dental composites, few have considered the influence of temperature on the two-body wear process. Additionally, no previous work has considered the influence of temperature on dominant wear mechanisms during the consumption of hot substances, hence the focus of this study. Reciprocating wear tests were carried out at varying artificial saliva lubricant temperatures (37 and 57°C) and material loss was quantified using profilometry. The wear tracks were analysed using FIB/SEM/TEM. Results reveal that the wear rate of a dental composite can significantly increase with temperature, with fatigue/delamination and ploughing acting as dominant mechanisms.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"8 4\",\"pages\":\"329-336\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The effect of temperature on the wear behaviour of dental composites
Despite numerous published studies on the wear of dental composites, few have considered the influence of temperature on the two-body wear process. Additionally, no previous work has considered the influence of temperature on dominant wear mechanisms during the consumption of hot substances, hence the focus of this study. Reciprocating wear tests were carried out at varying artificial saliva lubricant temperatures (37 and 57°C) and material loss was quantified using profilometry. The wear tracks were analysed using FIB/SEM/TEM. Results reveal that the wear rate of a dental composite can significantly increase with temperature, with fatigue/delamination and ploughing acting as dominant mechanisms.