{"title":"边坡的稳定性分析及动体运动的跳动分析","authors":"Bianca Riselo, L. Passini, A. Kormann","doi":"10.28927/sr.2022.003822","DOIUrl":null,"url":null,"abstract":"This research aims to present a deterministic and probabilistic analysis of the stability in 2D/3D of a road slope, located in the state of São Paulo, Brazil, in the Serra Pelada region, incorporating scenarios with and without surface suction and water level, and predict the movement of the mobilized-mass volume. The results of the stability analysis showed the variability of the safety factor, the probability of failure, and the mobilized-mass volume, in the twenty-six simulated scenarios. The results of the runout analysis of the mobilized-mass volume indicated that any possible landslide would interdict, at least, two of the three lanes of traffic, equivalent to 59.7% of the lanes. Therefore, it can be concluded that a 2D and 3D stability analysis combined with the material point method to predict the post-failure soil displacement provides a better understanding of all processes involved in a landslide, which helps to establish more adequate and effective mitigation and remedial measures for each situation. Finally, in conclusion, the studied slope, with a maximum failure probability of 1.24%, is safe in terms of its overall stability for all twenty-six simulated scenarios.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of a slope and runout analysis movement of the mobilized-mass volume\",\"authors\":\"Bianca Riselo, L. Passini, A. Kormann\",\"doi\":\"10.28927/sr.2022.003822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to present a deterministic and probabilistic analysis of the stability in 2D/3D of a road slope, located in the state of São Paulo, Brazil, in the Serra Pelada region, incorporating scenarios with and without surface suction and water level, and predict the movement of the mobilized-mass volume. The results of the stability analysis showed the variability of the safety factor, the probability of failure, and the mobilized-mass volume, in the twenty-six simulated scenarios. The results of the runout analysis of the mobilized-mass volume indicated that any possible landslide would interdict, at least, two of the three lanes of traffic, equivalent to 59.7% of the lanes. Therefore, it can be concluded that a 2D and 3D stability analysis combined with the material point method to predict the post-failure soil displacement provides a better understanding of all processes involved in a landslide, which helps to establish more adequate and effective mitigation and remedial measures for each situation. Finally, in conclusion, the studied slope, with a maximum failure probability of 1.24%, is safe in terms of its overall stability for all twenty-six simulated scenarios.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.003822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.003822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Stability analysis of a slope and runout analysis movement of the mobilized-mass volume
This research aims to present a deterministic and probabilistic analysis of the stability in 2D/3D of a road slope, located in the state of São Paulo, Brazil, in the Serra Pelada region, incorporating scenarios with and without surface suction and water level, and predict the movement of the mobilized-mass volume. The results of the stability analysis showed the variability of the safety factor, the probability of failure, and the mobilized-mass volume, in the twenty-six simulated scenarios. The results of the runout analysis of the mobilized-mass volume indicated that any possible landslide would interdict, at least, two of the three lanes of traffic, equivalent to 59.7% of the lanes. Therefore, it can be concluded that a 2D and 3D stability analysis combined with the material point method to predict the post-failure soil displacement provides a better understanding of all processes involved in a landslide, which helps to establish more adequate and effective mitigation and remedial measures for each situation. Finally, in conclusion, the studied slope, with a maximum failure probability of 1.24%, is safe in terms of its overall stability for all twenty-six simulated scenarios.
期刊介绍:
Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).