在k -最有希望产品(k-mpp)查询中回答why-not问题的数据细化方法

Vynska Amalia Permadi, T. Ahmad, B. J. Santoso
{"title":"在k -最有希望产品(k-mpp)查询中回答why-not问题的数据细化方法","authors":"Vynska Amalia Permadi, T. Ahmad, B. J. Santoso","doi":"10.12962/J24068535.V16I2.A754","DOIUrl":null,"url":null,"abstract":"K-Most Promising (K-MPP) product is a strategy for selecting a product that used in the process of determining the most demanded products by consumers. The basic computations used to perform K-MPP are two types of skyline queries: dynamic skyline and reverse skyline. K-MPP selection is done on the application layer, which is the last layer of the OSI model. One of the application layer functions is providing services according to the user's preferences. In the K-MPP implementation, there exists the situation in which the manufacturer may be less satisfied with the query results generated by the database search process (why-not question), so they want to know why the database gives query results that do not match their expectations. For example, manufacturers want to know why a particular data point (unexpected data) appears in the query result set, and why the expected product does not appear as a query result. The next problem is that traditional database systems will not be able to provide data analysis and solution to answer why-not questions preferred by users. To improve the usability of the database system, this study is aiming to answer why-not K-MPP and providing data refinement solutions by considering user feedback, so users can also find out why the result set does not meet their expectations. Moreover, it may help users to understand the result by performing analysis information and data refinement suggestion.","PeriodicalId":31796,"journal":{"name":"JUTI Jurnal Ilmiah Teknologi Informasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DATA REFINEMENT APPROACH FOR ANSWERING WHY-NOT PROBLEM OVER K-MOST PROMISING PRODUCT (K-MPP) QUERIES\",\"authors\":\"Vynska Amalia Permadi, T. Ahmad, B. J. Santoso\",\"doi\":\"10.12962/J24068535.V16I2.A754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-Most Promising (K-MPP) product is a strategy for selecting a product that used in the process of determining the most demanded products by consumers. The basic computations used to perform K-MPP are two types of skyline queries: dynamic skyline and reverse skyline. K-MPP selection is done on the application layer, which is the last layer of the OSI model. One of the application layer functions is providing services according to the user's preferences. In the K-MPP implementation, there exists the situation in which the manufacturer may be less satisfied with the query results generated by the database search process (why-not question), so they want to know why the database gives query results that do not match their expectations. For example, manufacturers want to know why a particular data point (unexpected data) appears in the query result set, and why the expected product does not appear as a query result. The next problem is that traditional database systems will not be able to provide data analysis and solution to answer why-not questions preferred by users. To improve the usability of the database system, this study is aiming to answer why-not K-MPP and providing data refinement solutions by considering user feedback, so users can also find out why the result set does not meet their expectations. Moreover, it may help users to understand the result by performing analysis information and data refinement suggestion.\",\"PeriodicalId\":31796,\"journal\":{\"name\":\"JUTI Jurnal Ilmiah Teknologi Informasi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JUTI Jurnal Ilmiah Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/J24068535.V16I2.A754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JUTI Jurnal Ilmiah Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/J24068535.V16I2.A754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

K-最有前途(K-MPP)产品是一种在确定消费者最需要的产品的过程中选择产品的策略。用于执行K-MPP的基本计算是两种类型的天际线查询:动态天际线和反向天际线。K-MPP的选择是在应用层上完成的,应用层是OSI模型的最后一层。应用层功能之一是根据用户的偏好提供服务。在K-MPP实现中,存在这样的情况,即制造商可能对数据库搜索过程生成的查询结果不太满意(为什么不质疑),因此他们想知道为什么数据库给出的查询结果与他们的期望不匹配。例如,制造商想知道为什么特定的数据点(意外数据)会出现在查询结果集中,以及为什么预期的产品不会作为查询结果出现。下一个问题是,传统的数据库系统将无法提供数据分析和解决方案来回答用户喜欢的问题。为了提高数据库系统的可用性,本研究旨在回答为什么不使用K-MPP,并通过考虑用户反馈提供数据细化解决方案,以便用户也能找出为什么结果集不能满足他们的期望。此外,它可以通过执行分析信息和数据细化建议来帮助用户理解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DATA REFINEMENT APPROACH FOR ANSWERING WHY-NOT PROBLEM OVER K-MOST PROMISING PRODUCT (K-MPP) QUERIES
K-Most Promising (K-MPP) product is a strategy for selecting a product that used in the process of determining the most demanded products by consumers. The basic computations used to perform K-MPP are two types of skyline queries: dynamic skyline and reverse skyline. K-MPP selection is done on the application layer, which is the last layer of the OSI model. One of the application layer functions is providing services according to the user's preferences. In the K-MPP implementation, there exists the situation in which the manufacturer may be less satisfied with the query results generated by the database search process (why-not question), so they want to know why the database gives query results that do not match their expectations. For example, manufacturers want to know why a particular data point (unexpected data) appears in the query result set, and why the expected product does not appear as a query result. The next problem is that traditional database systems will not be able to provide data analysis and solution to answer why-not questions preferred by users. To improve the usability of the database system, this study is aiming to answer why-not K-MPP and providing data refinement solutions by considering user feedback, so users can also find out why the result set does not meet their expectations. Moreover, it may help users to understand the result by performing analysis information and data refinement suggestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Rancang Bangun Sistem Presensi Mahasiswa Berbasis Web Dengan Pendekatan PIECES IMPLEMENTASI METODE PROTOTYPE UNTUK PERANCANGAN SISTEM INFORMASI PENYEDIA JASA MONTIR SISTEM PENDUKUNG KEPUTUSAN MENENTUKAN SISWA PENERIMA BEASISWA DENGAN METODE SIMPLE ADDITIVE WEIGHTING BERBASIS PAAS CLOUD COMPUTING Sistem Informasi Helpdesk Dalam Tata Kelola Teknologi Informasi Pada Diskominfo dan SP Analisis Faktor Kesuksesan Aplikasi HRIS Mobile Menggunakan Model Delone And Mclean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1