项目反应理论及其在教育测量中的应用第二部分:项目反应理论中测试等价化的理论与实践

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-12-20 DOI:10.1002/wics.1543
Kazuki Hori, Hirotaka Fukuhara, Tsuyoshi Yamada
{"title":"项目反应理论及其在教育测量中的应用第二部分:项目反应理论中测试等价化的理论与实践","authors":"Kazuki Hori, Hirotaka Fukuhara, Tsuyoshi Yamada","doi":"10.1002/wics.1543","DOIUrl":null,"url":null,"abstract":"Item response theory (IRT) is a class of latent variable models, which are used to develop educational and psychological tests (e.g., standardized tests, personality tests, tests for licensure and certification). We offer readers with comprehensive overviews of the theory and applications of IRT through two articles. While Part 1 of the review discusses topics such as foundations of educational measurement, IRT models, item parameter estimation, and applications of IRT with R, this Part 2 reviews areas of test scores based on IRT. The primary focus is on presenting various topics with respect to test equating such as equating designs, IRT‐based equating methods, anchor stability check methods, and impact data analysis that psychometricians would deal with for a large‐scale standardized assessment in practice. These analyses are illustrated in Example section using data from Kolen and Brennan (2014). We also cover the foundation of IRT, IRT‐based person ability parameter estimation methods, and scaling and scale score.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1543","citationCount":"1","resultStr":"{\"title\":\"Item response theory and its applications in educational measurement Part II: Theory and practices of test equating in item response theory\",\"authors\":\"Kazuki Hori, Hirotaka Fukuhara, Tsuyoshi Yamada\",\"doi\":\"10.1002/wics.1543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Item response theory (IRT) is a class of latent variable models, which are used to develop educational and psychological tests (e.g., standardized tests, personality tests, tests for licensure and certification). We offer readers with comprehensive overviews of the theory and applications of IRT through two articles. While Part 1 of the review discusses topics such as foundations of educational measurement, IRT models, item parameter estimation, and applications of IRT with R, this Part 2 reviews areas of test scores based on IRT. The primary focus is on presenting various topics with respect to test equating such as equating designs, IRT‐based equating methods, anchor stability check methods, and impact data analysis that psychometricians would deal with for a large‐scale standardized assessment in practice. These analyses are illustrated in Example section using data from Kolen and Brennan (2014). We also cover the foundation of IRT, IRT‐based person ability parameter estimation methods, and scaling and scale score.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1543\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1543\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1543","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

项目反应理论(IRT)是一类潜在变量模型,用于开发教育和心理测试(如标准化测试、个性测试、执照和认证测试)。我们通过两篇文章为读者提供了对IRT理论和应用的全面概述。综述的第1部分讨论了教育测量的基础、IRT模型、项目参数估计以及IRT与R的应用等主题,而第2部分则回顾了基于IRT的考试成绩领域。主要重点是介绍与测试等值相关的各种主题,如等值设计、基于IRT的等值方法、锚稳定性检查方法和影响数据分析,心理测量学家将在实践中进行大规模标准化评估。这些分析在示例部分使用Kolen和Brennan(2014)的数据进行了说明。我们还介绍了IRT的基础、基于IRT的人的能力参数估计方法以及量表和量表评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Item response theory and its applications in educational measurement Part II: Theory and practices of test equating in item response theory
Item response theory (IRT) is a class of latent variable models, which are used to develop educational and psychological tests (e.g., standardized tests, personality tests, tests for licensure and certification). We offer readers with comprehensive overviews of the theory and applications of IRT through two articles. While Part 1 of the review discusses topics such as foundations of educational measurement, IRT models, item parameter estimation, and applications of IRT with R, this Part 2 reviews areas of test scores based on IRT. The primary focus is on presenting various topics with respect to test equating such as equating designs, IRT‐based equating methods, anchor stability check methods, and impact data analysis that psychometricians would deal with for a large‐scale standardized assessment in practice. These analyses are illustrated in Example section using data from Kolen and Brennan (2014). We also cover the foundation of IRT, IRT‐based person ability parameter estimation methods, and scaling and scale score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1