水飞蓟种子提取物和维生素B6衍生物对甲基乙二醛和糖诱导的DNA氧化损伤的评价

IF 0.8 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Acta Alimentaria Pub Date : 2023-01-31 DOI:10.1556/066.2022.00138
N. İnceören, B. Çeken Toptancı, G. Kızıl, M. Kızıl
{"title":"水飞蓟种子提取物和维生素B6衍生物对甲基乙二醛和糖诱导的DNA氧化损伤的评价","authors":"N. İnceören, B. Çeken Toptancı, G. Kızıl, M. Kızıl","doi":"10.1556/066.2022.00138","DOIUrl":null,"url":null,"abstract":"Reducing sugars are known to generate reactive oxygen species (ROS), mainly by means of the glycation reaction. The hydroxyl radical, a prominent entity of ROS, is known to alter cellular DNA and induces damage to DNA, and plays a role in diseases such as diabetes mellitus. In this study, the oxidative damage of DNA induced by the lysine/Fe3+/MG reaction was investigated. Silybum marianum seeds extract (SlyE), standard silymarin (Sly), and vitamin B6 derivatives, pyridoxal-5-phosphate (PLP), pyridoxamine (PM), and pyridoxine (P) in reversing glycation-induced damage in DNA were evaluated. In addition, different sugars and sugar phosphates were incubated with plasmid pBR 322 DNA to control and compare their harmful effects. Our results revealed that SlyE protected lysine/Fe3+/MG induced oxidative DNA damage more effectively than Sly. Vitamins, on the other hand, prevented this DNA damage in the order of PLP>P>PM. The DNA altering and damaging intensity of sugars and sugar phosphates tested increased considerably in the following order: Ribose-5-phosphate > fructose-6-phosphate > ribose > fructose > fructose-1,6 biphosphate > glucose-6 phosphate > glucose. The results show that the lysine/Fe3+/MG glycation reaction can cause oxidative damage of DNA through a mechanism involving hydroxyl radicals. It also provides evidence that ribose-5-phosphate and fructose and its phosphate metabolites can alter DNA more rapidly in vitro than glucose and its phosphate metabolites.","PeriodicalId":6908,"journal":{"name":"Acta Alimentaria","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Silybum marianum seed extract and vitamin B6 derivatives on methylglyoxal and sugar-induced oxidative DNA damage\",\"authors\":\"N. İnceören, B. Çeken Toptancı, G. Kızıl, M. Kızıl\",\"doi\":\"10.1556/066.2022.00138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing sugars are known to generate reactive oxygen species (ROS), mainly by means of the glycation reaction. The hydroxyl radical, a prominent entity of ROS, is known to alter cellular DNA and induces damage to DNA, and plays a role in diseases such as diabetes mellitus. In this study, the oxidative damage of DNA induced by the lysine/Fe3+/MG reaction was investigated. Silybum marianum seeds extract (SlyE), standard silymarin (Sly), and vitamin B6 derivatives, pyridoxal-5-phosphate (PLP), pyridoxamine (PM), and pyridoxine (P) in reversing glycation-induced damage in DNA were evaluated. In addition, different sugars and sugar phosphates were incubated with plasmid pBR 322 DNA to control and compare their harmful effects. Our results revealed that SlyE protected lysine/Fe3+/MG induced oxidative DNA damage more effectively than Sly. Vitamins, on the other hand, prevented this DNA damage in the order of PLP>P>PM. The DNA altering and damaging intensity of sugars and sugar phosphates tested increased considerably in the following order: Ribose-5-phosphate > fructose-6-phosphate > ribose > fructose > fructose-1,6 biphosphate > glucose-6 phosphate > glucose. The results show that the lysine/Fe3+/MG glycation reaction can cause oxidative damage of DNA through a mechanism involving hydroxyl radicals. It also provides evidence that ribose-5-phosphate and fructose and its phosphate metabolites can alter DNA more rapidly in vitro than glucose and its phosphate metabolites.\",\"PeriodicalId\":6908,\"journal\":{\"name\":\"Acta Alimentaria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Alimentaria\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1556/066.2022.00138\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Alimentaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/066.2022.00138","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知还原糖主要通过糖基化反应产生活性氧(ROS)。羟基自由基是ROS的一个重要实体,已知可改变细胞DNA并诱导DNA损伤,并在糖尿病等疾病中发挥作用。本研究研究了赖氨酸/Fe3+/MG反应对DNA的氧化损伤。评估了水飞蓟籽提取物(SlyE)、标准水飞蓟素(Sly)和维生素B6衍生物、5-磷酸吡哆醛(PLP)、吡哆胺(PM)和吡哆醇(P)在逆转糖基化诱导的DNA损伤中的作用。此外,将不同的糖和糖磷酸盐与质粒pBR 322 DNA孵育,以控制和比较它们的有害作用。我们的结果表明,SlyE比Sly更有效地保护赖氨酸/Fe3+/MG诱导的DNA氧化损伤。另一方面,维生素以PLP>P>PM的顺序阻止了这种DNA损伤。测试的糖和糖磷酸盐的DNA改变和破坏强度显著增加,顺序如下:核糖-5-磷酸>果糖-6-磷酸>果糖-1,6-二磷酸>葡萄糖-6-磷酸>葡萄糖。结果表明,赖氨酸/Fe3+/MG糖基化反应可通过涉及羟基自由基的机制引起DNA的氧化损伤。它还提供了证据,证明核糖-5-磷酸和果糖及其磷酸盐代谢物在体外比葡萄糖及其磷酸盐代谢物更快地改变DNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Silybum marianum seed extract and vitamin B6 derivatives on methylglyoxal and sugar-induced oxidative DNA damage
Reducing sugars are known to generate reactive oxygen species (ROS), mainly by means of the glycation reaction. The hydroxyl radical, a prominent entity of ROS, is known to alter cellular DNA and induces damage to DNA, and plays a role in diseases such as diabetes mellitus. In this study, the oxidative damage of DNA induced by the lysine/Fe3+/MG reaction was investigated. Silybum marianum seeds extract (SlyE), standard silymarin (Sly), and vitamin B6 derivatives, pyridoxal-5-phosphate (PLP), pyridoxamine (PM), and pyridoxine (P) in reversing glycation-induced damage in DNA were evaluated. In addition, different sugars and sugar phosphates were incubated with plasmid pBR 322 DNA to control and compare their harmful effects. Our results revealed that SlyE protected lysine/Fe3+/MG induced oxidative DNA damage more effectively than Sly. Vitamins, on the other hand, prevented this DNA damage in the order of PLP>P>PM. The DNA altering and damaging intensity of sugars and sugar phosphates tested increased considerably in the following order: Ribose-5-phosphate > fructose-6-phosphate > ribose > fructose > fructose-1,6 biphosphate > glucose-6 phosphate > glucose. The results show that the lysine/Fe3+/MG glycation reaction can cause oxidative damage of DNA through a mechanism involving hydroxyl radicals. It also provides evidence that ribose-5-phosphate and fructose and its phosphate metabolites can alter DNA more rapidly in vitro than glucose and its phosphate metabolites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Alimentaria
Acta Alimentaria 农林科学-食品科技
CiteScore
1.80
自引率
0.00%
发文量
47
审稿时长
18-36 weeks
期刊介绍: Acta Alimentaria publishes original papers and reviews on food science (physics, physical chemistry, chemistry, analysis, biology, microbiology, enzymology, engineering, instrumentation, automation and economics of foods, food production and food technology, food quality, post-harvest treatments, food safety and nutrition).
期刊最新文献
Effect of n-3 unsaturated fatty acid diet on C-reactive protein and erythrocyte sedimentation rate in the anti-inflammatory effect of rheumatoid arthritis: A meta-analysis Enhancing fruit spirit quality: Novel approaches to mash acidification techniques Enrichment of apple juice with antioxidant-rich elderberry (Sambucus nigra L) pomace extract Antihyperlipidemic activity of myricetin Mechanochemical depolymerisation, chemical structure, and in vitro prebiotic potential of glucans derived from microcrystalline cellulose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1