梯形规则指数收敛的渐近精确误差估计

A. Belov, V. S. Khokhlachev
{"title":"梯形规则指数收敛的渐近精确误差估计","authors":"A. Belov, V. S. Khokhlachev","doi":"10.22363/2658-4670-2021-29-3-251-259","DOIUrl":null,"url":null,"abstract":"In many applied problems, efficient calculation of quadratures with high accuracy is required. The examples are: calculation of special functions of mathematical physics, calculation of Fourier coefficients of a given function, Fourier and Laplace transformations, numerical solution of integral equations, solution of boundary value problems for partial differential equations in integral form, etc. For grid calculation of quadratures, the trapezoidal, the mean and the Simpson methods are usually used. Commonly, the error of these methods depends quadratically on the grid step, and a large number of steps are required to obtain good accuracy. However, there are some cases when the error of the trapezoidal method depends on the step value not quadratically, but exponentially. Such cases are integral of a periodic function over the full period and the integral over the entire real axis of a function that decreases rapidly enough at infinity. If the integrand has poles of the first order on the complex plane, then the Trefethen-Weidemann majorant accuracy estimates are valid for such quadratures. In the present paper, new error estimates of exponentially converging quadratures from periodic functions over the full period are constructed. The integrand function can have an arbitrary number of poles of an integer order on the complex plane. If the grid is sufficiently detailed, i.e., it resolves the profile of the integrand function, then the proposed estimates are not majorant, but asymptotically sharp. Extrapolating, i.e., excluding this error from the numerical quadrature, it is possible to calculate the integrals of these classes with the accuracy of rounding errors already on extremely coarse grids containing only 10 steps.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotically accurate error estimates of exponential convergence for the trapezoidal rule\",\"authors\":\"A. Belov, V. S. Khokhlachev\",\"doi\":\"10.22363/2658-4670-2021-29-3-251-259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applied problems, efficient calculation of quadratures with high accuracy is required. The examples are: calculation of special functions of mathematical physics, calculation of Fourier coefficients of a given function, Fourier and Laplace transformations, numerical solution of integral equations, solution of boundary value problems for partial differential equations in integral form, etc. For grid calculation of quadratures, the trapezoidal, the mean and the Simpson methods are usually used. Commonly, the error of these methods depends quadratically on the grid step, and a large number of steps are required to obtain good accuracy. However, there are some cases when the error of the trapezoidal method depends on the step value not quadratically, but exponentially. Such cases are integral of a periodic function over the full period and the integral over the entire real axis of a function that decreases rapidly enough at infinity. If the integrand has poles of the first order on the complex plane, then the Trefethen-Weidemann majorant accuracy estimates are valid for such quadratures. In the present paper, new error estimates of exponentially converging quadratures from periodic functions over the full period are constructed. The integrand function can have an arbitrary number of poles of an integer order on the complex plane. If the grid is sufficiently detailed, i.e., it resolves the profile of the integrand function, then the proposed estimates are not majorant, but asymptotically sharp. Extrapolating, i.e., excluding this error from the numerical quadrature, it is possible to calculate the integrals of these classes with the accuracy of rounding errors already on extremely coarse grids containing only 10 steps.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2021-29-3-251-259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2021-29-3-251-259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多应用问题中,需要以高精度高效地计算象限。例如:数学物理特殊函数的计算、给定函数的傅立叶系数的计算、傅立叶变换和拉普拉斯变换、积分方程的数值解、积分形式的偏微分方程的边值问题的求解等,通常使用均值和Simpson方法。通常,这些方法的误差二次依赖于网格步长,并且需要大量的步长才能获得良好的精度。然而,在某些情况下,梯形方法的误差不是二次地,而是指数地取决于步长值。这种情况是周期函数在整个周期上的积分,以及函数在无穷大处迅速减小的整个实轴上的积分。如果被积函数在复平面上具有一阶极点,则Trefethen-Weidemann多数精度估计对这样的象限有效。本文构造了周期函数在全周期上指数收敛象限的新误差估计。被积函数在复平面上可以具有任意数量的整数阶极点。如果网格足够详细,即它解析了被积函数的轮廓,那么所提出的估计不是多数的,而是渐近尖锐的。外推,即从数值求积中排除该误差,可以在仅包含10个步长的极粗网格上以舍入误差的精度计算这些类的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotically accurate error estimates of exponential convergence for the trapezoidal rule
In many applied problems, efficient calculation of quadratures with high accuracy is required. The examples are: calculation of special functions of mathematical physics, calculation of Fourier coefficients of a given function, Fourier and Laplace transformations, numerical solution of integral equations, solution of boundary value problems for partial differential equations in integral form, etc. For grid calculation of quadratures, the trapezoidal, the mean and the Simpson methods are usually used. Commonly, the error of these methods depends quadratically on the grid step, and a large number of steps are required to obtain good accuracy. However, there are some cases when the error of the trapezoidal method depends on the step value not quadratically, but exponentially. Such cases are integral of a periodic function over the full period and the integral over the entire real axis of a function that decreases rapidly enough at infinity. If the integrand has poles of the first order on the complex plane, then the Trefethen-Weidemann majorant accuracy estimates are valid for such quadratures. In the present paper, new error estimates of exponentially converging quadratures from periodic functions over the full period are constructed. The integrand function can have an arbitrary number of poles of an integer order on the complex plane. If the grid is sufficiently detailed, i.e., it resolves the profile of the integrand function, then the proposed estimates are not majorant, but asymptotically sharp. Extrapolating, i.e., excluding this error from the numerical quadrature, it is possible to calculate the integrals of these classes with the accuracy of rounding errors already on extremely coarse grids containing only 10 steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
期刊最新文献
Asymptote-based scientific animation Brain-computer interaction modeling based on the stable diffusion model Hodge-de Rham Laplacian and geometric criteria for gravitational waves On a stable calculation of the normal to a surface given approximately Numerical integration of the Cauchy problem with non-singular special points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1