光散射异常

IF 25.2 1区 物理与天体物理 Q1 OPTICS Advances in Optics and Photonics Pub Date : 2019-07-15 DOI:10.1364/aop.11.000892
A. Krasnok, D. Baranov, Huanan Li, M. Miri, F. Monticone, A. Alú
{"title":"光散射异常","authors":"A. Krasnok, D. Baranov, Huanan Li, M. Miri, F. Monticone, A. Alú","doi":"10.1364/aop.11.000892","DOIUrl":null,"url":null,"abstract":"Scattering of electromagnetic waves lies at the heart of most experimental techniques over nearly the entire electromagnetic spectrum, ranging from radio waves to optics and X-rays. Hence, deep insight into the basics of scattering theory and understanding the peculiar features of electromagnetic scattering is necessary for the correct interpretation of experimental data and an understanding of the underlying physics. Recently, a broad spectrum of exceptional scattering phenomena attainable in suitably engineered structures has been predicted and demonstrated. Examples include bound states in the continuum, exceptional points in PT-symmetrical non-Hermitian systems, coherent perfect absorption, virtual perfect absorption, nontrivial lasing, non-radiating sources, and others. In this paper, we establish a unified description of such exotic scattering phenomena and show that the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix. We provide insights on how managing these special points in the complex frequency plane provides a powerful approach to tailor unusual scattering regimes.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Anomalies in light scattering\",\"authors\":\"A. Krasnok, D. Baranov, Huanan Li, M. Miri, F. Monticone, A. Alú\",\"doi\":\"10.1364/aop.11.000892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scattering of electromagnetic waves lies at the heart of most experimental techniques over nearly the entire electromagnetic spectrum, ranging from radio waves to optics and X-rays. Hence, deep insight into the basics of scattering theory and understanding the peculiar features of electromagnetic scattering is necessary for the correct interpretation of experimental data and an understanding of the underlying physics. Recently, a broad spectrum of exceptional scattering phenomena attainable in suitably engineered structures has been predicted and demonstrated. Examples include bound states in the continuum, exceptional points in PT-symmetrical non-Hermitian systems, coherent perfect absorption, virtual perfect absorption, nontrivial lasing, non-radiating sources, and others. In this paper, we establish a unified description of such exotic scattering phenomena and show that the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix. We provide insights on how managing these special points in the complex frequency plane provides a powerful approach to tailor unusual scattering regimes.\",\"PeriodicalId\":48960,\"journal\":{\"name\":\"Advances in Optics and Photonics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optics and Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/aop.11.000892\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/aop.11.000892","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 112

摘要

电磁波的散射是大多数实验技术的核心,几乎涵盖了从无线电波到光学和X射线的整个电磁频谱。因此,深入了解散射理论的基础并理解电磁散射的特殊特征对于正确解释实验数据和理解潜在的物理是必要的。最近,已经预测并证明了在适当的工程结构中可以实现的广泛的异常散射现象。例子包括连续体中的束缚态、PT对称非埃尔米特系统中的例外点、相干完全吸收、虚拟完全吸收、非平凡激光、非辐射源等。在本文中,我们建立了对这种奇异散射现象的统一描述,并表明所有这些效应的起源可以追溯到底层散射矩阵的极点和零点的性质。我们深入了解了如何在复杂频率平面中管理这些特殊点,为定制不寻常的散射状态提供了一种强大的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomalies in light scattering
Scattering of electromagnetic waves lies at the heart of most experimental techniques over nearly the entire electromagnetic spectrum, ranging from radio waves to optics and X-rays. Hence, deep insight into the basics of scattering theory and understanding the peculiar features of electromagnetic scattering is necessary for the correct interpretation of experimental data and an understanding of the underlying physics. Recently, a broad spectrum of exceptional scattering phenomena attainable in suitably engineered structures has been predicted and demonstrated. Examples include bound states in the continuum, exceptional points in PT-symmetrical non-Hermitian systems, coherent perfect absorption, virtual perfect absorption, nontrivial lasing, non-radiating sources, and others. In this paper, we establish a unified description of such exotic scattering phenomena and show that the origin of all these effects can be traced back to the properties of poles and zeros of the underlying scattering matrix. We provide insights on how managing these special points in the complex frequency plane provides a powerful approach to tailor unusual scattering regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
56.60
自引率
0.00%
发文量
13
期刊介绍: Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications. The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields. The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts. AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers. Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community. In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.
期刊最新文献
Entanglement-based quantum information technology: a tutorial Silicon photonics for the visible and near infrared spectrum Recent advances in metamaterial integrated photonics High-power and high-beam-quality photonic-crystal surface-emitting lasers (PCSELs) Non-Abelian Gauge Field in Optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1