{"title":"E690船用钢激光锻造耦合电弧焊新工艺研究","authors":"Wenlong Cai, Yongkang Zhang, Jianhang Liu","doi":"10.1108/rpj-10-2022-0345","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the mechanical properties.\n\n\nDesign/methodology/approach\nTaking E690 marine steel as the research object, the experiment adopts a new process method of laser forging coupled arc welding. Welding for comparative experiments. Experiments show that the “V”-shaped groove arc welding process has a larger fusion area, but has pores, the arc current is 168 A, the arc voltage is 28 V and the welding speed is 600 mm/min.\n\n\nFindings\nIt can be seen from tensile tests that the coupling welding process has the highest tensile strength and yield strength, 872 MPa and 692 MPa, respectively, and the fracture elongation is 29.29%. The single-beam laser forging coupled arc welding process has a distance of laser and wire of 6–8 mm, a laser wavelength of 1,064 nm and the highest weld fusion ratio. The microhardness test shows that the average hardness of single-beam laser forging in the weld zone is 487.54 HV, which is 10.30% higher than that of arc welding. The average hardness in the fusion zone is 788.08 HV, which is 14.52% higher than that of the arc welding process.\n\n\nOriginality/value\nThe originality of the experiment: proposed a new process method of coupling arc repair for offshore steel forging; adopted a new process method of simultaneous coupling of single-beam short-pulse laser, double-beam short-pulse laser and arc welding; and obtained effect of pulsed laser and arc composite repair on porosity and fusion of E690 marine steel welds.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on new technology of laser forging coupled arc welding of E690 marine steel\",\"authors\":\"Wenlong Cai, Yongkang Zhang, Jianhang Liu\",\"doi\":\"10.1108/rpj-10-2022-0345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the mechanical properties.\\n\\n\\nDesign/methodology/approach\\nTaking E690 marine steel as the research object, the experiment adopts a new process method of laser forging coupled arc welding. Welding for comparative experiments. Experiments show that the “V”-shaped groove arc welding process has a larger fusion area, but has pores, the arc current is 168 A, the arc voltage is 28 V and the welding speed is 600 mm/min.\\n\\n\\nFindings\\nIt can be seen from tensile tests that the coupling welding process has the highest tensile strength and yield strength, 872 MPa and 692 MPa, respectively, and the fracture elongation is 29.29%. The single-beam laser forging coupled arc welding process has a distance of laser and wire of 6–8 mm, a laser wavelength of 1,064 nm and the highest weld fusion ratio. The microhardness test shows that the average hardness of single-beam laser forging in the weld zone is 487.54 HV, which is 10.30% higher than that of arc welding. The average hardness in the fusion zone is 788.08 HV, which is 14.52% higher than that of the arc welding process.\\n\\n\\nOriginality/value\\nThe originality of the experiment: proposed a new process method of coupling arc repair for offshore steel forging; adopted a new process method of simultaneous coupling of single-beam short-pulse laser, double-beam short-pulse laser and arc welding; and obtained effect of pulsed laser and arc composite repair on porosity and fusion of E690 marine steel welds.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-10-2022-0345\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-10-2022-0345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on new technology of laser forging coupled arc welding of E690 marine steel
Purpose
The purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the mechanical properties.
Design/methodology/approach
Taking E690 marine steel as the research object, the experiment adopts a new process method of laser forging coupled arc welding. Welding for comparative experiments. Experiments show that the “V”-shaped groove arc welding process has a larger fusion area, but has pores, the arc current is 168 A, the arc voltage is 28 V and the welding speed is 600 mm/min.
Findings
It can be seen from tensile tests that the coupling welding process has the highest tensile strength and yield strength, 872 MPa and 692 MPa, respectively, and the fracture elongation is 29.29%. The single-beam laser forging coupled arc welding process has a distance of laser and wire of 6–8 mm, a laser wavelength of 1,064 nm and the highest weld fusion ratio. The microhardness test shows that the average hardness of single-beam laser forging in the weld zone is 487.54 HV, which is 10.30% higher than that of arc welding. The average hardness in the fusion zone is 788.08 HV, which is 14.52% higher than that of the arc welding process.
Originality/value
The originality of the experiment: proposed a new process method of coupling arc repair for offshore steel forging; adopted a new process method of simultaneous coupling of single-beam short-pulse laser, double-beam short-pulse laser and arc welding; and obtained effect of pulsed laser and arc composite repair on porosity and fusion of E690 marine steel welds.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation