K. Raghavendra Naik, R. kumar, V. Saravanan, S. Seetharamu, P. Sampathkumaran
{"title":"Cr3C2-25NiCr和35WC-Co/65NiCrBSi基高温耐磨HVOF涂层的研究","authors":"K. Raghavendra Naik, R. kumar, V. Saravanan, S. Seetharamu, P. Sampathkumaran","doi":"10.1080/17515831.2021.1951542","DOIUrl":null,"url":null,"abstract":"ABSTRACT This work concerns a technique to produce thermal sprayed coatings using HVOF (high-velocity oxy-fuel) method as it is a widely used application in high-temperature erosion and corrosion environment. Two types of hard coatings Cr3C2-25NiCr and 35WC-Co/65NiCrBSi were sprayed on an SS-347 steel substrate. The erosion tests were done using high-temperature jet erosion set up to study the effect of velocity, temperature and impact angles on the coatings produced. The surface morphology of the samples was characterized using 3D laser confocal microscopy, light microscopy, scanning electron microscopy with EDAX and X-ray diffraction. Microhardness, porosity level and roughness parameters were evaluated to infer a probable mechanism of material removal. The Cr3C2-25NiCr coating exhibited ∼3.3 times higher erosion resistance than 35WC-Co/65NiCrBSi coating at 90° and 30° impact angles. SEM and 3D laser confocal images on the eroded surface of the coatings reveal the combination of ductile and brittle fracture of coating. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"16 1","pages":"10 - 22"},"PeriodicalIF":1.6000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The study of Cr3C2-25NiCr and 35WC-Co/65NiCrBSi-based HVOF coatings for high-temperature erosion resistance application\",\"authors\":\"K. Raghavendra Naik, R. kumar, V. Saravanan, S. Seetharamu, P. Sampathkumaran\",\"doi\":\"10.1080/17515831.2021.1951542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This work concerns a technique to produce thermal sprayed coatings using HVOF (high-velocity oxy-fuel) method as it is a widely used application in high-temperature erosion and corrosion environment. Two types of hard coatings Cr3C2-25NiCr and 35WC-Co/65NiCrBSi were sprayed on an SS-347 steel substrate. The erosion tests were done using high-temperature jet erosion set up to study the effect of velocity, temperature and impact angles on the coatings produced. The surface morphology of the samples was characterized using 3D laser confocal microscopy, light microscopy, scanning electron microscopy with EDAX and X-ray diffraction. Microhardness, porosity level and roughness parameters were evaluated to infer a probable mechanism of material removal. The Cr3C2-25NiCr coating exhibited ∼3.3 times higher erosion resistance than 35WC-Co/65NiCrBSi coating at 90° and 30° impact angles. SEM and 3D laser confocal images on the eroded surface of the coatings reveal the combination of ductile and brittle fracture of coating. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"16 1\",\"pages\":\"10 - 22\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2021.1951542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2021.1951542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
The study of Cr3C2-25NiCr and 35WC-Co/65NiCrBSi-based HVOF coatings for high-temperature erosion resistance application
ABSTRACT This work concerns a technique to produce thermal sprayed coatings using HVOF (high-velocity oxy-fuel) method as it is a widely used application in high-temperature erosion and corrosion environment. Two types of hard coatings Cr3C2-25NiCr and 35WC-Co/65NiCrBSi were sprayed on an SS-347 steel substrate. The erosion tests were done using high-temperature jet erosion set up to study the effect of velocity, temperature and impact angles on the coatings produced. The surface morphology of the samples was characterized using 3D laser confocal microscopy, light microscopy, scanning electron microscopy with EDAX and X-ray diffraction. Microhardness, porosity level and roughness parameters were evaluated to infer a probable mechanism of material removal. The Cr3C2-25NiCr coating exhibited ∼3.3 times higher erosion resistance than 35WC-Co/65NiCrBSi coating at 90° and 30° impact angles. SEM and 3D laser confocal images on the eroded surface of the coatings reveal the combination of ductile and brittle fracture of coating. GRAPHICAL ABSTRACT