GARCH(1,1)模型上的偏斜正态分布和偏斜STUDENT-T分布

D. Nugroho, Agus Priyono, B. Susanto
{"title":"GARCH(1,1)模型上的偏斜正态分布和偏斜STUDENT-T分布","authors":"D. Nugroho, Agus Priyono, B. Susanto","doi":"10.14710/medstat.14.1.21-32","DOIUrl":null,"url":null,"abstract":"The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) type models have become important tools in financial application since their ability to estimate the volatility of financial time series data. In the empirical financial literature, the presence of skewness and heavy-tails have impacts on how well the GARCH-type models able to capture the financial market volatility sufficiently. This study estimates the volatility of financial asset returns based on the GARCH(1,1) model assuming Skew Normal and Skew Student-t distributions for the returns errors. The models are applied to daily returns of FTSE100 and IBEX35 stock indices from January 2000 to December 2017. The model parameters are estimated by using the Generalized Reduced Gradient Non-Linear method in Excel’s Solver and also the Adaptive Random Walk Metropolis method implemented in Matlab. The estimation results from fitting the models to real data demonstrate that Excel’s Solver is a promising way for estimating the parameters of the GARCH(1,1) models with non-Normal distribution, indicated by the accuracy of the estimation of Excel’s Solver. The fitting performance of models is evaluated by using log-likelihood ratio test and it indicates that the GARCH(1,1) model with Skew Student-t distribution provides the best fitting, followed by Student-t, Skew-Normal, and Normal distributions.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":"14 1","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SKEW NORMAL AND SKEW STUDENT-T DISTRIBUTIONS ON GARCH(1,1) MODEL\",\"authors\":\"D. Nugroho, Agus Priyono, B. Susanto\",\"doi\":\"10.14710/medstat.14.1.21-32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) type models have become important tools in financial application since their ability to estimate the volatility of financial time series data. In the empirical financial literature, the presence of skewness and heavy-tails have impacts on how well the GARCH-type models able to capture the financial market volatility sufficiently. This study estimates the volatility of financial asset returns based on the GARCH(1,1) model assuming Skew Normal and Skew Student-t distributions for the returns errors. The models are applied to daily returns of FTSE100 and IBEX35 stock indices from January 2000 to December 2017. The model parameters are estimated by using the Generalized Reduced Gradient Non-Linear method in Excel’s Solver and also the Adaptive Random Walk Metropolis method implemented in Matlab. The estimation results from fitting the models to real data demonstrate that Excel’s Solver is a promising way for estimating the parameters of the GARCH(1,1) models with non-Normal distribution, indicated by the accuracy of the estimation of Excel’s Solver. The fitting performance of models is evaluated by using log-likelihood ratio test and it indicates that the GARCH(1,1) model with Skew Student-t distribution provides the best fitting, followed by Student-t, Skew-Normal, and Normal distributions.\",\"PeriodicalId\":34146,\"journal\":{\"name\":\"Media Statistika\",\"volume\":\"14 1\",\"pages\":\"21-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/medstat.14.1.21-32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.14.1.21-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义自回归条件异方差(GARCH)模型由于能够估计金融时间序列数据的波动性而成为金融应用中的重要工具。在实证金融文献中,偏度和重尾的存在对garch型模型充分捕捉金融市场波动的能力有影响。本研究基于GARCH(1,1)模型估计金融资产收益的波动性,假设收益误差为偏态正态分布和偏态Student-t分布。该模型应用于2000年1月至2017年12月的FTSE100和IBEX35股票指数的日收益。利用Excel求解器中的广义降梯度非线性方法和Matlab中实现的自适应随机漫步Metropolis方法对模型参数进行估计。将模型拟合到实际数据的估计结果表明,Excel的求解器对于非正态分布的GARCH(1,1)模型的参数估计是一种很有前途的方法,其估计精度表明了Excel的求解器的估计精度。采用对数似然比检验评价模型的拟合性能,结果表明,学生-t分布为偏态的GARCH(1,1)模型拟合效果最好,其次是学生-t分布、偏态分布和正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SKEW NORMAL AND SKEW STUDENT-T DISTRIBUTIONS ON GARCH(1,1) MODEL
The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) type models have become important tools in financial application since their ability to estimate the volatility of financial time series data. In the empirical financial literature, the presence of skewness and heavy-tails have impacts on how well the GARCH-type models able to capture the financial market volatility sufficiently. This study estimates the volatility of financial asset returns based on the GARCH(1,1) model assuming Skew Normal and Skew Student-t distributions for the returns errors. The models are applied to daily returns of FTSE100 and IBEX35 stock indices from January 2000 to December 2017. The model parameters are estimated by using the Generalized Reduced Gradient Non-Linear method in Excel’s Solver and also the Adaptive Random Walk Metropolis method implemented in Matlab. The estimation results from fitting the models to real data demonstrate that Excel’s Solver is a promising way for estimating the parameters of the GARCH(1,1) models with non-Normal distribution, indicated by the accuracy of the estimation of Excel’s Solver. The fitting performance of models is evaluated by using log-likelihood ratio test and it indicates that the GARCH(1,1) model with Skew Student-t distribution provides the best fitting, followed by Student-t, Skew-Normal, and Normal distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
SIMULATION STUDY FOR UNDERSTANDING THE PERFORMANCE OF PARTIAL LEAST SQUARES–MODIFIED FUZZY CLUSTERING (PLSMFC) IN FINDING GROUPS UNDER STRUCTURAL EQUATION MODEL BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH SURVIVAL ANALYSIS FOR RECURRENT EVENT DATA USING COUNTING PROCESS APPROACH: APPLICATION TO DIABETICS COMPARISON OF SPATIAL WEIGHTED MATRIX BETWEEN POWER AND QUEEN ON THE SPATIAL EMPIRICAL BEST LINEAR UNBIASED PREDICTION MODEL (Study on Per Capita Expenditure in East Java Province in 2019) MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1