Muhammad Ali Kaleem , Muhammad Zubair Alam , Mushtaq Khan , Syed Husain Imran Jaffery , Badar Rashid
{"title":"增材制造过程中粉末豪斯纳比和卡尔指数精度的实验研究","authors":"Muhammad Ali Kaleem , Muhammad Zubair Alam , Mushtaq Khan , Syed Husain Imran Jaffery , Badar Rashid","doi":"10.1016/j.mprp.2020.06.061","DOIUrl":null,"url":null,"abstract":"<div><p><span>Powder based additive manufacturing processes are the most reliable and widely used additive manufacturing processes of present era. Among other parameters, flow of powders within these processes play a critical role in obtaining desirable characteristics of end products. Two most significant parameters which define the flow of powders in additive manufacturing processes are Hausner Ratio and Carr Index. Both Hausner Ratio and Carr Index are theoretically calculated so their numerical values represent the flow character of powders. Since Hausner Ratio and Carr Index are not intrinsic properties of powders therefore an argument exists on their accuracy to determine the powder flow. In this research, an experimental setup is organized to validate the accuracy of Hausner Ratio and Carr Index. The setup consists of a system comprising of three identical powder housing chambers each integrated with a DC servo motor. The speed of motors is controlled by LABVIEW graphical user interface. Three powder lots with similar morphology were used with each having average particle size (d</span><sub>50</sub><span>) equal to 25 µm, 75 µm and 150 µm respectively. The actual flow of powder lots was obtained by using the experimental setup. Results of actual flow were compared with Hausner Ratio and Carr Index of respective powder lots. The effect of particle size distribution<span> on flowability of powders is also discussed.</span></span></p></div>","PeriodicalId":18669,"journal":{"name":"Metal Powder Report","volume":"76 ","pages":"Pages S50-S54"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mprp.2020.06.061","citationCount":"33","resultStr":"{\"title\":\"An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes\",\"authors\":\"Muhammad Ali Kaleem , Muhammad Zubair Alam , Mushtaq Khan , Syed Husain Imran Jaffery , Badar Rashid\",\"doi\":\"10.1016/j.mprp.2020.06.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Powder based additive manufacturing processes are the most reliable and widely used additive manufacturing processes of present era. Among other parameters, flow of powders within these processes play a critical role in obtaining desirable characteristics of end products. Two most significant parameters which define the flow of powders in additive manufacturing processes are Hausner Ratio and Carr Index. Both Hausner Ratio and Carr Index are theoretically calculated so their numerical values represent the flow character of powders. Since Hausner Ratio and Carr Index are not intrinsic properties of powders therefore an argument exists on their accuracy to determine the powder flow. In this research, an experimental setup is organized to validate the accuracy of Hausner Ratio and Carr Index. The setup consists of a system comprising of three identical powder housing chambers each integrated with a DC servo motor. The speed of motors is controlled by LABVIEW graphical user interface. Three powder lots with similar morphology were used with each having average particle size (d</span><sub>50</sub><span>) equal to 25 µm, 75 µm and 150 µm respectively. The actual flow of powder lots was obtained by using the experimental setup. Results of actual flow were compared with Hausner Ratio and Carr Index of respective powder lots. The effect of particle size distribution<span> on flowability of powders is also discussed.</span></span></p></div>\",\"PeriodicalId\":18669,\"journal\":{\"name\":\"Metal Powder Report\",\"volume\":\"76 \",\"pages\":\"Pages S50-S54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mprp.2020.06.061\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Powder Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002606572030223X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Powder Report","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002606572030223X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes
Powder based additive manufacturing processes are the most reliable and widely used additive manufacturing processes of present era. Among other parameters, flow of powders within these processes play a critical role in obtaining desirable characteristics of end products. Two most significant parameters which define the flow of powders in additive manufacturing processes are Hausner Ratio and Carr Index. Both Hausner Ratio and Carr Index are theoretically calculated so their numerical values represent the flow character of powders. Since Hausner Ratio and Carr Index are not intrinsic properties of powders therefore an argument exists on their accuracy to determine the powder flow. In this research, an experimental setup is organized to validate the accuracy of Hausner Ratio and Carr Index. The setup consists of a system comprising of three identical powder housing chambers each integrated with a DC servo motor. The speed of motors is controlled by LABVIEW graphical user interface. Three powder lots with similar morphology were used with each having average particle size (d50) equal to 25 µm, 75 µm and 150 µm respectively. The actual flow of powder lots was obtained by using the experimental setup. Results of actual flow were compared with Hausner Ratio and Carr Index of respective powder lots. The effect of particle size distribution on flowability of powders is also discussed.
期刊介绍:
Metal Powder Report covers the powder metallurgy industry worldwide. Each issue carries news and features on technical trends in the manufacture, research and use of metal powders. Metal Powder Report is recognised by parts manufacturers and end-users worldwide for authoritative and high quality reporting and analysis of the international powder metallurgy industry. Included in your Metal Powder Report subscription will be the PM World Directory. This extensive directory will provide you with a valuable comprehensive guide to suppliers of materials, equipment and services to the PM industry.