基于有限元极限分析的砂覆黏土工作平台及承载能力评估

IF 0.3 Q4 ENGINEERING, GEOLOGICAL Australian Geomechanics Journal Pub Date : 2023-09-01 DOI:10.56295/agj5835
Sean Goodall, R. Merifield
{"title":"基于有限元极限分析的砂覆黏土工作平台及承载能力评估","authors":"Sean Goodall, R. Merifield","doi":"10.56295/agj5835","DOIUrl":null,"url":null,"abstract":"The bearing capacity of shallow foundations on layered soils is typically based on empirical models assuming a strip footing. Shape factors are then applied to the strip footing solution to account for the specific geometry of the foundation being considered. A common practical application of this methodology is when the ultimate bearing capacity of a granular working platform constructed over a clay subgrade is estimated using the Working Platforms for Tracked Plant BRE-470 guideline. Previous studies using finite element limit analysis have been undertaken to examine a strip footing on a layered soil and how the resulting bearing capacity compares to that derived from BRE-470. This paper presents an extension of previous work by the authors using finite element limit analysis to investigate the three-dimensional influence on the bearing capacity of square and rectangular footings on sand over clay. The finite element limit analysis solutions are used to produce charts to assist designers with estimating the ultimate bearing capacity of granular working platforms overlying clay. The paper also aims to highlight some important considerations when adopting the BRE-470 guideline to design granular working platforms overlying clay.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working platforms and bearing capacity assessments of sand overlying clay using finite element limit analysis\",\"authors\":\"Sean Goodall, R. Merifield\",\"doi\":\"10.56295/agj5835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bearing capacity of shallow foundations on layered soils is typically based on empirical models assuming a strip footing. Shape factors are then applied to the strip footing solution to account for the specific geometry of the foundation being considered. A common practical application of this methodology is when the ultimate bearing capacity of a granular working platform constructed over a clay subgrade is estimated using the Working Platforms for Tracked Plant BRE-470 guideline. Previous studies using finite element limit analysis have been undertaken to examine a strip footing on a layered soil and how the resulting bearing capacity compares to that derived from BRE-470. This paper presents an extension of previous work by the authors using finite element limit analysis to investigate the three-dimensional influence on the bearing capacity of square and rectangular footings on sand over clay. The finite element limit analysis solutions are used to produce charts to assist designers with estimating the ultimate bearing capacity of granular working platforms overlying clay. The paper also aims to highlight some important considerations when adopting the BRE-470 guideline to design granular working platforms overlying clay.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

层状地基上浅基础的承载力通常基于条形基础的经验模型。然后将形状因素应用于条形基础解决方案,以考虑正在考虑的基础的特定几何形状。该方法的一个常见实际应用是使用履带式工厂工作平台BRE-470指南估计在粘土路基上建造的颗粒状工作平台的极限承载能力。以前的研究使用有限元极限分析来检查层状土壤上的条形基础,并将所得承载力与BRE-470所得承载力进行比较。本文是作者利用有限元极限分析方法研究砂土上方形和矩形基础对承载力的三维影响的扩展。利用有限元极限分析解生成图表,帮助设计人员估算粘土上覆颗粒状工作平台的极限承载力。本文还旨在强调采用BRE-470准则设计粘土上覆颗粒状工作平台时应注意的一些重要事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Working platforms and bearing capacity assessments of sand overlying clay using finite element limit analysis
The bearing capacity of shallow foundations on layered soils is typically based on empirical models assuming a strip footing. Shape factors are then applied to the strip footing solution to account for the specific geometry of the foundation being considered. A common practical application of this methodology is when the ultimate bearing capacity of a granular working platform constructed over a clay subgrade is estimated using the Working Platforms for Tracked Plant BRE-470 guideline. Previous studies using finite element limit analysis have been undertaken to examine a strip footing on a layered soil and how the resulting bearing capacity compares to that derived from BRE-470. This paper presents an extension of previous work by the authors using finite element limit analysis to investigate the three-dimensional influence on the bearing capacity of square and rectangular footings on sand over clay. The finite element limit analysis solutions are used to produce charts to assist designers with estimating the ultimate bearing capacity of granular working platforms overlying clay. The paper also aims to highlight some important considerations when adopting the BRE-470 guideline to design granular working platforms overlying clay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Geomechanics Journal
Australian Geomechanics Journal ENGINEERING, GEOLOGICAL-
CiteScore
0.40
自引率
0.00%
发文量
1
期刊最新文献
Can the shrink-swell index be predicted in the Wagga Wagga region based on Atterberg limits? The Queensland geotechnical database Simplified excavation-induced lateral displacement assessment in Sydney area Australian Geomechanics – State of the Journal Assessing the geometry of defect waviness from borehole data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1