{"title":"两组复合复合物驱动高效的人成纤维细胞非整合重编程。","authors":"Xiangyi Lin, Cuiping Rong, Shouhai Wu","doi":"10.1089/cell.2021.0143","DOIUrl":null,"url":null,"abstract":"Currently, plentiful chemical-assisted methods have been applied for mouse induced pluripotent stem cells (iPSCs). It has been reported that small-molecule compounds can only reprogram mouse embryonic fibroblasts into mouse chemically induced pluripotent stem cells (mouse CiPSCs). However, human CiPSCs have not been reported. Therefore, it is still necessary to search for safer chemically assisted human pluripotent stem cells, which might realize the potential of human iPSCs. Here, we developed two sets of chemical cocktails to greatly improve the induction efficiency of human nonintegrated iPSCs, including the 4 compound mixture (4M) and the 5 compound mixture (4MI). These two sets of complex driving strategies might greatly improve the reprogramming efficiency to generate integration-free iPSCs.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Sets of Compound Complex Driving for High Efficiency of Nonintegration Reprogramming of Human Fibroblasts.\",\"authors\":\"Xiangyi Lin, Cuiping Rong, Shouhai Wu\",\"doi\":\"10.1089/cell.2021.0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, plentiful chemical-assisted methods have been applied for mouse induced pluripotent stem cells (iPSCs). It has been reported that small-molecule compounds can only reprogram mouse embryonic fibroblasts into mouse chemically induced pluripotent stem cells (mouse CiPSCs). However, human CiPSCs have not been reported. Therefore, it is still necessary to search for safer chemically assisted human pluripotent stem cells, which might realize the potential of human iPSCs. Here, we developed two sets of chemical cocktails to greatly improve the induction efficiency of human nonintegrated iPSCs, including the 4 compound mixture (4M) and the 5 compound mixture (4MI). These two sets of complex driving strategies might greatly improve the reprogramming efficiency to generate integration-free iPSCs.\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2021.0143\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2021.0143","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Two Sets of Compound Complex Driving for High Efficiency of Nonintegration Reprogramming of Human Fibroblasts.
Currently, plentiful chemical-assisted methods have been applied for mouse induced pluripotent stem cells (iPSCs). It has been reported that small-molecule compounds can only reprogram mouse embryonic fibroblasts into mouse chemically induced pluripotent stem cells (mouse CiPSCs). However, human CiPSCs have not been reported. Therefore, it is still necessary to search for safer chemically assisted human pluripotent stem cells, which might realize the potential of human iPSCs. Here, we developed two sets of chemical cocktails to greatly improve the induction efficiency of human nonintegrated iPSCs, including the 4 compound mixture (4M) and the 5 compound mixture (4MI). These two sets of complex driving strategies might greatly improve the reprogramming efficiency to generate integration-free iPSCs.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.