Jie Gao, K. T. W. Choo, Junming Cao, R. Lee, Simon T. Perrault
{"title":"CoAIcoder:在定性分析中检验人工智能辅助的人与人协作的有效性","authors":"Jie Gao, K. T. W. Choo, Junming Cao, R. Lee, Simon T. Perrault","doi":"10.1145/3617362","DOIUrl":null,"url":null,"abstract":"While AI-assisted individual qualitative analysis has been substantially studied, AI-assisted collaborative qualitative analysis (CQA) – a process that involves multiple researchers working together to interpret data – remains relatively unexplored. After identifying CQA practices and design opportunities through formative interviews, we designed and implemented CoAIcoder, a tool leveraging AI to enhance human-to-human collaboration within CQA through four distinct collaboration methods. With a between-subject design, we evaluated CoAIcoder with 32 pairs of CQA-trained participants across common CQA phases under each collaboration method. Our findings suggest that while using a shared AI model as a mediator among coders could improve CQA efficiency and foster agreement more quickly in the early coding stage, it might affect the final code diversity. We also emphasize the need to consider the independence level when using AI to assist human-to-human collaboration in various CQA scenarios. Lastly, we suggest design implications for future AI-assisted CQA systems.","PeriodicalId":50917,"journal":{"name":"ACM Transactions on Computer-Human Interaction","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CoAIcoder: Examining the Effectiveness of AI-assisted Human-to-Human Collaboration in Qualitative Analysis\",\"authors\":\"Jie Gao, K. T. W. Choo, Junming Cao, R. Lee, Simon T. Perrault\",\"doi\":\"10.1145/3617362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While AI-assisted individual qualitative analysis has been substantially studied, AI-assisted collaborative qualitative analysis (CQA) – a process that involves multiple researchers working together to interpret data – remains relatively unexplored. After identifying CQA practices and design opportunities through formative interviews, we designed and implemented CoAIcoder, a tool leveraging AI to enhance human-to-human collaboration within CQA through four distinct collaboration methods. With a between-subject design, we evaluated CoAIcoder with 32 pairs of CQA-trained participants across common CQA phases under each collaboration method. Our findings suggest that while using a shared AI model as a mediator among coders could improve CQA efficiency and foster agreement more quickly in the early coding stage, it might affect the final code diversity. We also emphasize the need to consider the independence level when using AI to assist human-to-human collaboration in various CQA scenarios. Lastly, we suggest design implications for future AI-assisted CQA systems.\",\"PeriodicalId\":50917,\"journal\":{\"name\":\"ACM Transactions on Computer-Human Interaction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer-Human Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3617362\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3617362","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
CoAIcoder: Examining the Effectiveness of AI-assisted Human-to-Human Collaboration in Qualitative Analysis
While AI-assisted individual qualitative analysis has been substantially studied, AI-assisted collaborative qualitative analysis (CQA) – a process that involves multiple researchers working together to interpret data – remains relatively unexplored. After identifying CQA practices and design opportunities through formative interviews, we designed and implemented CoAIcoder, a tool leveraging AI to enhance human-to-human collaboration within CQA through four distinct collaboration methods. With a between-subject design, we evaluated CoAIcoder with 32 pairs of CQA-trained participants across common CQA phases under each collaboration method. Our findings suggest that while using a shared AI model as a mediator among coders could improve CQA efficiency and foster agreement more quickly in the early coding stage, it might affect the final code diversity. We also emphasize the need to consider the independence level when using AI to assist human-to-human collaboration in various CQA scenarios. Lastly, we suggest design implications for future AI-assisted CQA systems.
期刊介绍:
This ACM Transaction seeks to be the premier archival journal in the multidisciplinary field of human-computer interaction. Since its first issue in March 1994, it has presented work of the highest scientific quality that contributes to the practice in the present and future. The primary emphasis is on results of broad application, but the journal considers original work focused on specific domains, on special requirements, on ethical issues -- the full range of design, development, and use of interactive systems.