Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu
{"title":"用静态离散弹性杆法分析弹性细长结构的分岔及稳定性","authors":"Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu","doi":"10.1115/1.4062533","DOIUrl":null,"url":null,"abstract":"\n Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bifurcations and stability analysis of elastic slender structures using static discrete elastic rods method\",\"authors\":\"Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu\",\"doi\":\"10.1115/1.4062533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062533\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062533","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Bifurcations and stability analysis of elastic slender structures using static discrete elastic rods method
Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation