{"title":"关于广义相对论的对称性","authors":"S. E. Samokhvalov","doi":"10.7546/JGSP-55-2020-75-103","DOIUrl":null,"url":null,"abstract":"In this work we use generalized deformed gauge groups for investigation of symmetry of general relativity (GR). GR is formulated in generalized reference frames, which are represented by (anholonomic in general case) affine frame fields. The general principle of relativity is extended to the requirement of invariance of the theory with respect to transitions between generalized reference frames, that is, with respect to the group $GL^g$ of local linear transformations of affine frame fields. GR is interpreted as the gauge theory of the gauge group of translations $T^g_M$, and therefore is invariant under the space-time diffeomorphisms. The groups $GL^g$ and $T^g_M$ are united into group $S^g_M$, which is their semidirect product and is the complete symmetry group of the general relativity in an affine frame (GRAF). \nThe consequence of $GL^g$-invariance of GRAF is the Palatini equation, which in the absence of torsion goes into the metricity condition, and vice versa, that is, is fulfilled identically in the Riemannian space. The consequence of the $T^g_M$-invariance of GRAF is representation of the Einstein equation in the superpotential form, that is, in the form of dynamic Maxwell equations (or Young-Mills equations). Deformation of the group $S^g_M$ leads to renormalisation of energy-momentum of the gravitation field. At the end we show that by limiting admissible reference frames (by $GL^g$-gauge fixing) from GRAF, in addition to Einstein gravity, one can obtain other local equivalent formulations of GR: general relativity in an orthonormal frame or teleparallel equivalent of general relativity, dilaton gravity, unimodular gravity, etc.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"About the Symmetry of General Relativity\",\"authors\":\"S. E. Samokhvalov\",\"doi\":\"10.7546/JGSP-55-2020-75-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we use generalized deformed gauge groups for investigation of symmetry of general relativity (GR). GR is formulated in generalized reference frames, which are represented by (anholonomic in general case) affine frame fields. The general principle of relativity is extended to the requirement of invariance of the theory with respect to transitions between generalized reference frames, that is, with respect to the group $GL^g$ of local linear transformations of affine frame fields. GR is interpreted as the gauge theory of the gauge group of translations $T^g_M$, and therefore is invariant under the space-time diffeomorphisms. The groups $GL^g$ and $T^g_M$ are united into group $S^g_M$, which is their semidirect product and is the complete symmetry group of the general relativity in an affine frame (GRAF). \\nThe consequence of $GL^g$-invariance of GRAF is the Palatini equation, which in the absence of torsion goes into the metricity condition, and vice versa, that is, is fulfilled identically in the Riemannian space. The consequence of the $T^g_M$-invariance of GRAF is representation of the Einstein equation in the superpotential form, that is, in the form of dynamic Maxwell equations (or Young-Mills equations). Deformation of the group $S^g_M$ leads to renormalisation of energy-momentum of the gravitation field. At the end we show that by limiting admissible reference frames (by $GL^g$-gauge fixing) from GRAF, in addition to Einstein gravity, one can obtain other local equivalent formulations of GR: general relativity in an orthonormal frame or teleparallel equivalent of general relativity, dilaton gravity, unimodular gravity, etc.\",\"PeriodicalId\":43078,\"journal\":{\"name\":\"Journal of Geometry and Symmetry in Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Symmetry in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/JGSP-55-2020-75-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/JGSP-55-2020-75-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
In this work we use generalized deformed gauge groups for investigation of symmetry of general relativity (GR). GR is formulated in generalized reference frames, which are represented by (anholonomic in general case) affine frame fields. The general principle of relativity is extended to the requirement of invariance of the theory with respect to transitions between generalized reference frames, that is, with respect to the group $GL^g$ of local linear transformations of affine frame fields. GR is interpreted as the gauge theory of the gauge group of translations $T^g_M$, and therefore is invariant under the space-time diffeomorphisms. The groups $GL^g$ and $T^g_M$ are united into group $S^g_M$, which is their semidirect product and is the complete symmetry group of the general relativity in an affine frame (GRAF).
The consequence of $GL^g$-invariance of GRAF is the Palatini equation, which in the absence of torsion goes into the metricity condition, and vice versa, that is, is fulfilled identically in the Riemannian space. The consequence of the $T^g_M$-invariance of GRAF is representation of the Einstein equation in the superpotential form, that is, in the form of dynamic Maxwell equations (or Young-Mills equations). Deformation of the group $S^g_M$ leads to renormalisation of energy-momentum of the gravitation field. At the end we show that by limiting admissible reference frames (by $GL^g$-gauge fixing) from GRAF, in addition to Einstein gravity, one can obtain other local equivalent formulations of GR: general relativity in an orthonormal frame or teleparallel equivalent of general relativity, dilaton gravity, unimodular gravity, etc.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.