Bo Yi , Jianhui Lv , Xingwei Wang , Lianbo Ma , Min Huang
{"title":"端边缘云协作5G网络中的数字孪生驱动和智能化内容交付","authors":"Bo Yi , Jianhui Lv , Xingwei Wang , Lianbo Ma , Min Huang","doi":"10.1016/j.dcan.2022.09.014","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of 5G/6G and AI enables an environment of Internet of Everything (IoE) which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay. However, these massive devices will lead to explosive traffic growth, which in turn cause great burden for the data transmission and content delivery. This challenge can be eased by sinking some critical content from cloud to edge. In this case, how to determine the critical content, where to sink and how to access the content correctly and efficiently become new challenges. This work focuses on establishing a highly efficient content delivery framework in the IoE environment. In particular, the IoE environment is re-constructed as an end-edge-cloud collaborative system, in which the concept of digital twin is applied to promote the collaboration. Based on the digital asset obtained by digital twin from end users, a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention (TPA) enabled Long Short-Term Memory (LSTM) model. Then, the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning (RL) technology. Finally, a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead. The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate, the average throughput, the successful content delivery rate and the average routing overhead.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822001894/pdfft?md5=6503225d77faa9204b1407f70b5af63e&pid=1-s2.0-S2352864822001894-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Digital twin driven and intelligence enabled content delivery in end-edge-cloud collaborative 5G networks\",\"authors\":\"Bo Yi , Jianhui Lv , Xingwei Wang , Lianbo Ma , Min Huang\",\"doi\":\"10.1016/j.dcan.2022.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid development of 5G/6G and AI enables an environment of Internet of Everything (IoE) which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay. However, these massive devices will lead to explosive traffic growth, which in turn cause great burden for the data transmission and content delivery. This challenge can be eased by sinking some critical content from cloud to edge. In this case, how to determine the critical content, where to sink and how to access the content correctly and efficiently become new challenges. This work focuses on establishing a highly efficient content delivery framework in the IoE environment. In particular, the IoE environment is re-constructed as an end-edge-cloud collaborative system, in which the concept of digital twin is applied to promote the collaboration. Based on the digital asset obtained by digital twin from end users, a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention (TPA) enabled Long Short-Term Memory (LSTM) model. Then, the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning (RL) technology. Finally, a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead. The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate, the average throughput, the successful content delivery rate and the average routing overhead.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001894/pdfft?md5=6503225d77faa9204b1407f70b5af63e&pid=1-s2.0-S2352864822001894-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001894\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822001894","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Digital twin driven and intelligence enabled content delivery in end-edge-cloud collaborative 5G networks
The rapid development of 5G/6G and AI enables an environment of Internet of Everything (IoE) which can support millions of connected mobile devices and applications to operate smoothly at high speed and low delay. However, these massive devices will lead to explosive traffic growth, which in turn cause great burden for the data transmission and content delivery. This challenge can be eased by sinking some critical content from cloud to edge. In this case, how to determine the critical content, where to sink and how to access the content correctly and efficiently become new challenges. This work focuses on establishing a highly efficient content delivery framework in the IoE environment. In particular, the IoE environment is re-constructed as an end-edge-cloud collaborative system, in which the concept of digital twin is applied to promote the collaboration. Based on the digital asset obtained by digital twin from end users, a content popularity prediction scheme is firstly proposed to decide the critical content by using the Temporal Pattern Attention (TPA) enabled Long Short-Term Memory (LSTM) model. Then, the prediction results are input for the proposed caching scheme to decide where to sink the critical content by using the Reinforce Learning (RL) technology. Finally, a collaborative routing scheme is proposed to determine the way to access the content with the objective of minimizing overhead. The experimental results indicate that the proposed schemes outperform the state-of-the-art benchmarks in terms of the caching hit rate, the average throughput, the successful content delivery rate and the average routing overhead.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.