求助PDF
{"title":"带有COVID-19插图的数据驱动解决方案框架","authors":"Kassim S. Mwitondi, Raed A. Said","doi":"10.5334/dsj-2021-036","DOIUrl":null,"url":null,"abstract":"Data–driven solutions have long been keenly sought after as tools for driving the world’s fast changing business environment, with business leaders seeking to enhance decision making processes within their organisations. In the current era of Big Data, applications of data tools in addressing global, regional and national challenges have steadily grown in almost all fields across the globe. However, working in silos has continued to impede research progress, creating knowledge gaps and challenges across geographical borders, legislations, sectors and fields. There are many examples of the challenges the world faces in tackling global issues, including the complex interactions of the 17 Sustainable Development Goals (SDG) and the spatio–temporal variations of the impact of the on-going COVID–19 pandemic. Both challenges can be seen as non–orthogonal, strongly correlated and requiring an interdisciplinary approach to address. We present a generic framework for filling such gaps, based on two data-driven algorithms that combine data, machine learning and interdisciplinarity to bridge societal knowledge gaps. The novelty of the algorithms derives from their robust built–in mechanics for handling data randomness. Animation applications on structured COVID–19 related data obtained from the European Centre for Disease Prevention and Control (ECDC) and the UK Office of National Statistics exhibit great potentials for decision-support systems. Predictive findings are based on unstructured data–a large COVID–19 X–Ray data, 3181 image files, obtained from GitHub and Kaggle. Our results exhibit consistent performance across samples, resonating with cross-disciplinary discussions on novel paths for data-driven interdisciplinary research. © 2021, Ubiquity Press. All rights reserved.","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Framework for Data-Driven Solutions with COVID-19 Illustrations\",\"authors\":\"Kassim S. Mwitondi, Raed A. Said\",\"doi\":\"10.5334/dsj-2021-036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data–driven solutions have long been keenly sought after as tools for driving the world’s fast changing business environment, with business leaders seeking to enhance decision making processes within their organisations. In the current era of Big Data, applications of data tools in addressing global, regional and national challenges have steadily grown in almost all fields across the globe. However, working in silos has continued to impede research progress, creating knowledge gaps and challenges across geographical borders, legislations, sectors and fields. There are many examples of the challenges the world faces in tackling global issues, including the complex interactions of the 17 Sustainable Development Goals (SDG) and the spatio–temporal variations of the impact of the on-going COVID–19 pandemic. Both challenges can be seen as non–orthogonal, strongly correlated and requiring an interdisciplinary approach to address. We present a generic framework for filling such gaps, based on two data-driven algorithms that combine data, machine learning and interdisciplinarity to bridge societal knowledge gaps. The novelty of the algorithms derives from their robust built–in mechanics for handling data randomness. Animation applications on structured COVID–19 related data obtained from the European Centre for Disease Prevention and Control (ECDC) and the UK Office of National Statistics exhibit great potentials for decision-support systems. Predictive findings are based on unstructured data–a large COVID–19 X–Ray data, 3181 image files, obtained from GitHub and Kaggle. Our results exhibit consistent performance across samples, resonating with cross-disciplinary discussions on novel paths for data-driven interdisciplinary research. © 2021, Ubiquity Press. All rights reserved.\",\"PeriodicalId\":35375,\"journal\":{\"name\":\"Data Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/dsj-2021-036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/dsj-2021-036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
引用
批量引用
A Framework for Data-Driven Solutions with COVID-19 Illustrations
Data–driven solutions have long been keenly sought after as tools for driving the world’s fast changing business environment, with business leaders seeking to enhance decision making processes within their organisations. In the current era of Big Data, applications of data tools in addressing global, regional and national challenges have steadily grown in almost all fields across the globe. However, working in silos has continued to impede research progress, creating knowledge gaps and challenges across geographical borders, legislations, sectors and fields. There are many examples of the challenges the world faces in tackling global issues, including the complex interactions of the 17 Sustainable Development Goals (SDG) and the spatio–temporal variations of the impact of the on-going COVID–19 pandemic. Both challenges can be seen as non–orthogonal, strongly correlated and requiring an interdisciplinary approach to address. We present a generic framework for filling such gaps, based on two data-driven algorithms that combine data, machine learning and interdisciplinarity to bridge societal knowledge gaps. The novelty of the algorithms derives from their robust built–in mechanics for handling data randomness. Animation applications on structured COVID–19 related data obtained from the European Centre for Disease Prevention and Control (ECDC) and the UK Office of National Statistics exhibit great potentials for decision-support systems. Predictive findings are based on unstructured data–a large COVID–19 X–Ray data, 3181 image files, obtained from GitHub and Kaggle. Our results exhibit consistent performance across samples, resonating with cross-disciplinary discussions on novel paths for data-driven interdisciplinary research. © 2021, Ubiquity Press. All rights reserved.